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ON PARTIAL REGULARITY OF STEADY-STATE
SOLUTIONS TO THE 6D NAVIER-STOKES
EQUATIONS

HONGJIE DONG AND ROBERT M. STRAIN

ABSTRACT. Consider steady-state weak solutions to the incom-
pressible Navier-Stokes equations in six spatial dimensions. We
prove that the 2D Hausdorff measure of the set of singular points
is equal to zero. This problem was mentioned in 1988 by Struwe
4], during his study of the five dimensional case.

1. INTRODUCTION

In this paper we consider the incompressible steady-state Navier-
Stokes equations in siz spatial dimensions with unit viscosity

(1.1) uVu—Au+Vp=f, divu=0,

in a domain Q C RS. We are interested in the partial regularity of
weak solutions (u,p) to ([L.1]).

Although the problem of the global regularity of solutions to the
time-dependent Navier-Stokes equations in three and higher space di-
mensions is still widely open, many authors have studied the partial
regularity of weak solutions. In his pioneering work [[9, B0, 2], Schef-
fer established various partial regularity results for weak solutions to
the 3D Navier-Stokes equations satisfying the so-called local energy
inequality. In 3D, the notion of suitable weak solutions was first in-
troduced in a celebrated paper [[[] by Caffarelli, Kohn and Nirenberg.
They called a pair consisting of velocity u and pressure p a suitable
weak solution if u has finite energy norm, p belongs to the Lebesgue
space Ls,4, u and p are weak solutions to the Navier-Stokes equations,
and they satisfy a local energy inequality. After proving an e-regularity
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criteria for local boundedness of solutions, they established partial reg-
ularity of solutions and estimated the Hausdorff dimension of the sin-
gular set. They proved that, for any suitable weak solution (u, p), there
is an open subset where the velocity field u is Holder continuous and
they showed that the 1D Hausdorff measure of the complement of this
subset is equal to zero. In [[f], F. Lin gave a more direct and simplified
proof of Caffarelli, Kohn and Nirenberg’s result. A detailed treatment
was later given by Ladyzhenskaya and Seregin in [[J]. Recently, some
extended results have been obtained in a number of papers; see Sere-
gin [[§], Gustafson, Kang and Tsai [fJ], and Vasseur [£q], Kukavica [[[7],
and the references therein.

Much fewer results are available in the literature for the 4D and
higher dimensional time-dependent Navier-Stokes equations, in which
case the problem is more super-critical. In [BI], Scheffer showed that
there exists a weak solution u in R* x RT, which may not necessarily
verify the local energy estimate, such that u is continuous outside a
locally closed set of R* x RT whose 3D Hausdorff measure is finite.
In a recent paper [}, the first author and D. Du proved that, for any
local-in-time smooth solution to the 4D Navier-Stokes equations, the
2D Hausdorff measure of the set of singular points at the first potential
blow-up time is equal to zero. We remark that, in terms of the method,
the dimension four in [P] is critical due to the following reason. To the
best of our knowledge all the existing methods on partial regularity for
the Navier-Stokes equations share the following prerequisite condition:
in the energy inequality the nonlinear term should be controlled by
the energy norm under the Sobolev imbedding theorem. Actually, four
is the highest dimension in which we have such condition: L.{L% <
L' LN LEA'. In five or higher dimensions this condition fails.

This paper concerns the partial regularity of weak solutions u to the
steady-state Navier-Stokes equations ([Z1]). In the literature, the most
relevant paper on the subject is [P4] by Struwe, in which he proved
the following e-regularity result, which implies that weak solutions are
regular outside a singular set of zero 1D Hausdorff measure.

Theorem 1.1 (Struwe [4]). Let Q be an open domain in R® and
f € L) for some q > 5/2. There exists an absolute constant ey > 0
such that the following holds true. If u € H*(S;R®) is a weak solution
to (1)) which satisfies a generalized energy inequality, and if for some
o € Q there is Ry > 0 such that

7"_1/ \Vul?dz < ey, Vr e (0,Ry),
|x—zo|<T

then u 1s Holder continuous in a neighborhood of x.
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The proof of Theorem [[]] relies on some techniques for proving reg-
ularity for elliptic systems (cf. Morrey [[7 and Giaquinta [[J]) and
estimates for the linear Stokes’ system due to Solonnikov [B3]. A simi-
lar approach was used before by Giaquinta and Modica in [[[1]] to study
the steady-state Navier-Stokes equations in dimensions d < 4. Be-
cause time corresponds to two space dimensions, in some sense the 5D
stationary problem is similar to the 3D non-stationary problem. There-
fore, dimension five is the smallest dimension for which the steady-state
Navier-Stokes equations are super critical. We also note that Theorem
[T was improved by K. Kang [[3], in which partial regularity up to the
boundary was established for a smooth domain €2 C R®. The existence
of regular solutions to the steady-state Navier-Stokes in high dimen-
sions have also attracted substantial attention. We refer the reader to
B, B3, , B, B, @ B] and the references therein.

In [B4] Struwe raised the following interesting question: does the
analogous partial regularity result hold in dimension six or higher. It
seems to us that some arguments in [24] do not work in six or higher
dimensions. In this paper, we give a positive answer to Struwe’s ques-
tion in dimension six. To be more precise, we shall prove the following
regularity result with a sufficiently small constant €y: Let €2 be an open
set in R, f € Lg1oc(€2), and let u be a weak solution to ([ZT) satisfying
a local energy inequality (B.9). Then if for some zq € 2 there exists an
Ry > 0 such that

T_2/ \Vu|2dx <ey, Vre (0, Ro),
|x—zo|<T

then u is Holder continuous in a neighborhood of zy. In particular, it
follows that the 2D Hausdorff measure of the set of singular points of
the weak solution u is equal to zero.

Related to Struwe’s work, our proof also uses some techniques which
appeared in the study of the regularity theory for elliptic systems; but
our approach is quite different from that in [24]. In particular, we do
not use any estimate for the linear Stokes’ systems. Roughly speaking,
there are three steps in our proof. In the first step, we essentially
follow the argument in [P, which in turn used some ideas in [[J] and
[[6). The novelties are in the second and third steps. In the second
step, we choose suitable test functions in the energy inequality and then
use an iteration method to establish a weak decay estimate of certain
scaling invariant quantities. In the last step, we successively improve
this decay estimate by a bootstrap argument, and finally we use the
elliptic theory to get a good estimate of the Lz, norm of Vu, which
yields the Holder regularity thanks to the Morrey lemma.
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It is, however, unclear to us whether similar results hold in seven or
higher dimensions. In fact, we believe that six is the highest dimension
to which our approach can be applied; see Remark B.§. Therefore, in
some sense, our results are critical in terms of the dimension.

To conclude this introduction, we explain some notation used in the
sequel: R? is the d-dimensional Euclidean space with a fixed orthonor-
mal basis. A typical point in R? is denoted by z = (1, %9, ..., 74). As
usual the summation convention over repeated indices is enforced. And
Ty =T = Z;.lzl x;y; is the inner product for z,y € R%. The stan-
dard Lebesgue spaces are denoted by L, (p > 1). Various constants are
denoted by N in general and the expression N = N(---) means that
the given constant N depends only on the contents of the parentheses.

2. SETTING AND MAIN RESULTS

For summable functions p,u = (u;) and 7 = (7;;), we use the follow-
ing standard differential operators

u; = Dju, Vp= (pﬂ-), Vu = (Ui7j)>
divu = u;;, divr = (7;;), Au=divVu.

These are all understood in the sense of distributions.
We use the following notation for spheres and balls

S(z,7) = {x € R |z — x| =7}, S(r)=S(0,7), S=35(1),
B(xg,r) :{xeRGHx—xd <r}, B(r)=DB(0,r), B=DB(1).
We also denote the mean value of a summable function as follows

1
Wheor = T50] /B(xo,ﬂ u(e) de.

Here |A| as usual denotes the Lebesgue measure of the set A.
Let g be a given point in 2 and » > 0 a real number such that
B(zo,7) C . It is known that in the sense of distributions one has

= Dij ((ul - [ui]woﬂ‘)(uj - [uj]woﬂ‘» + div fv in B(x(b T)'

This will hold for a weak solution to ([[.1]). Now let n(x) be a smooth
function on R® supported in the unit ball B(1),0 <n < landn=1
on B(2/3). We consider the decomposition

(21) p:ﬁxo,r_'_hxo,r; in B(SC(],’/’).
Above p, » solves the following Poisson equation

Aﬁl‘oﬂ“ = Dzy((uz - [ui]xoﬂ“)(uj - [uj]xo,f)nxo,r> + div(fn:co,r)>
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where 7, () of n((x — x)/r). Then h,, , is harmonic in B(zg,7/2).
We will omit the indices of p and h whenever there is no possibility of
confusion. The following notation will be used throughout the article:

1
A(r) = A(r,xg) = = /B( ) |u|2dx,
z0,T

1
E(r) = E(r7 330) = 2 /B( )\Vu|2 dx,
T0o,r

F(r):F(r,xo):/B( )\f|2dx.

Notice these objects are invariant under the natural scaling for ([[.T]):
u(z) = du(Az), plr) = Np(A\x), flz) = XNf).

We will use these quantities to study the regularity of 6D steady-state
suitable weak solutions to ([L.1]).

We say that a pair of functions (u,p) is a suitable weak solution to
(D) in Qif uw € H.(Q) and p € L3j210c(2) satisfy (I]) in the weak
sense and additionally the generalized local energy inequality holds for
any non-negative test function ¢ € C§°(2):

(2.2) 2/9\Vu|2wdx§/Q|u|2Aw+(\u\2+2p)u~Vw+f-uwdx.

The existence of regular solutions to the Dirichlet problem of ([.1]) in
four dimensions have been obtained Gerhardt [§], in five dimensions
by Struwe [BF], and in five and six dimensions by Frehse and Ruzicka
@, B]; see also [T, B, [, B] for other related results. We observe that
the regular solution constructed in [f] satisfies (£:3). On the other
hand, at the time of this writing, the uniqueness problem in five or
higher dimensions is still wide open unless some smallness assumption
is imposed on the initial conditions.

By the Sobolev imbedding theorem, for any functions v € H} . and
r > 0, we have the following inequality
(2.3)

3/2 3/2
/ lul*de < N </ |Vu|2dx) + N3 </ |u|2dat> :
B(r) B(r) B(r)

This implies that C'(r) is well defined for a suitable weak solution.
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Next we state the main results of the article.

Theorem 2.1 (e-regularity criterion in terms of E). Let Q be an open
set in RS, f € Lg10(Q), and suppose that the pair (u,p) is a suitable
weak solution to ([L1]) in Q. Then there is a positive number gy sat-
isfying the following property. Assume that for a point xo € ) the
following inequality holds:

(2.4) limsup E(r) < .
rl0

Then u is Holder continuous in a neighborhood of xg.

Theorem 2.2 (e-regularity criterion in terms of C, D and F'). Let
be an open set in R®, f € Lg1,(), and suppose that the pair (u,p) is
a suitable weak solution to ([1)) in Q. There is a positive number gy
satisfying the following property. Assume that for a point xy € € and
for some py such that B(xg, po) C 2 the inequality

(2.5) C(po) + D(po) + F(po) < €0
holds. Then w is Holder continuous in a neighborhood of xg.

Theorem 2.3 (Partial regularity). Let 2 be an open set in R®, f €
L6 15c(2), and suppose that the pair (u,p) is a suitable weak solution

to (L)) in Q. Then the 2D Hausdorff measure of the set of singular
points in ) is equal to zero.

These results are in the spirit of the work of Caffarelli, Kohn and
Nirenberg [l], where it was proved that for any suitable weak solution
u to the 3D time-dependent Navier-Stokes equations the 1D Hausdorff
measure of the set of singular points is equal to zero. For 5D steady-
state Navier-Stokes equations, results of this type were obtained by

Struwe [4].

Remark 2.4. The assumption of the external force f in Theorems B.J}-
may be relaxed. It should be possible to only assume that f in
L 0c for some p € (3,6) or alternatively to assume that f is in certain
Morrey spaces. However, we do not intend to find such a minimal
assumption of f in this paper.

3. THE PROOF

We shall prove the main theorems in three steps.
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3.1. Step 1. In the first step, we want to control A, C' and D in a
smaller ball by the their values in a larger ball under the assumption
that F is sufficiently small. Here we follow the argument in [, which
in turn used some ideas in [[5] and [If]. These first few estimates do

not use the equation ([[.]]). Furthermore, in this section we often write
C(r) = C(r,zo) and similarly for A, D, F and F.

Lemma 3.1. Suppose v € (0,1), p > 0 are constants and B(xq, p) C
Q. Then we have

(31)  Clyp) < N[y *E*2(p) + 7 A4 () E**(p) + 7*C(p)],
where N is a constant independent of v, p and x.

Proof. Denote r = vyp. By using the Poincaré inequality and Cauchy’s
inequality, we have

[ k= [ (P ) dot [ (Pl
B(zo,r) B(zo,r) B(zo,r)

6
< Np/ Vulju| do + (f) / lu? da.
B(zo,p) P B(zo,p)

This is furthermore bounded by

1/2 1/2
< Np</ |vu\2dx) (/ \u\2dx)
B(zo,p) B(zo,p)

6
—l—(i) / lu|? d
P B(wo,p)
1/2 6 2/3
ng3A1/2(p)(/ |Vu\2d:c) +(f) (/ |u|3dx> P2,
B(wo,p) p B(zo,p)

Due to the Sobolev inequality (P.3), we obtain

3/2
/ lul*de < N [(/ |Vul? d:L’)
B(zo,r) B(zo,r)
3/4 6
+r73p%2 A3/4 () (/ |Vu|2dx) + (f) / |u|3d:£] :
B(zo,p) P B(zo,p)

The conclusion of Lemma B.1 follows immediately. O

Lemma 3.2. Suppose v € (0,1/3] and p > 0 are constants, and
B(xg, p) C Q. Then we have

(3.2)  D(vp) S N[Y2D(p) + v *E**(p) + v *F*/*(p)],

where N is a constant independent of v, p and x.
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Proof. Denote r = 7p. Recall the decomposition of p introduced in
(B.Q)). By using the Calderén-Zygmund estimate and the Sobolev-
Poincaré inequality, one has

(3.3) / oo (@)[*? do
B(zo,r)

SN[ P e N [ AT AP P
R6

B(zo,r)

< N</B(xo,r> |vu\2dx)3/2+N(/B

5/4
1197 dz) "

(Z‘o,?“)

Similarly,

3/2
(3.4) / \pmo,p|3/2dxgzv(/ Vuf? dz
B(zo,p) B(zo,p)

5/4
+N(/ |f\6/5dx> .
B(zo,p)

Since hy, , is harmonic in B(zo, p/2), any Sobolev norm of h,, , in a
smaller ball can be estimated by any L, norm of hy, , in B(zo, p/2).
Thus, using the Poincaré inequality, one can obtain

[ s = g hage 2 da
B(zo,r)

< Nr3/2/ (Vi o> de < Nv¥™/2 sup |V, /¥
B(zo,r) B(zo,r)

Further using the estimates for harmonic functions, the above is

N\ 1572
(3.5) SN(—) L o= lrapglangl?ds
P B(zo,p/2)

o 15/2
<N (—) / 19— Do pleo 2 + [ der
P B(zo,p)

Combining (B.3), (B.4) and (B.H) together yields
3/2
3O [ -l de < N( [ Valae)
B(zo,r) B(z0,p)

5/4 o\ 15/2 )
eN ([ ura) " ew (D) [ e
B(zo,p) P B(zo,p)
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Since Pugr + Py = P = Pao,p + Pag,p in B(xg, 1), by Holder’s inequality

(37) / |[hxo7p]xo7r - [hl‘oﬂ“]xo,r|3/2 dx
B(zo,r)
= NTGthO,P]Io,T - [hro,T]ro7T|3/2 = NT6H13$0,P]107T - [ﬁm07r]x0,r‘3/2

SN [ a7 [
B(zo,r)

From (B.G), B1), B3) and (B4), we get

3/2
/ |p - [hxo,r]xo,r|3/2 dz < N(/ |VU|2dl')
B("E(LT) B(:Eo,p)

6 5/4 r\ ' 3/2
e N (furran)en (D) [ e i
B(wo,p) P B(zo,p)

Finally, by Holder’s inequality, the lemma is proved. O

Note that the following estimates use the equation ([L.1), or more
precisely they use the generalized local energy inequality (R.2).

Lemma 3.3. Suppose 6 € (0,1/2] and p > 0 are constants, and
B(zg, p) C Q. Then we have

A(0p) + E(0p) < NO2[C**(p) + C(p) + C*(p) D**(p) + F(p)].
In particular, when 0 = 1/2 we have
(3.8) A(p/2)+ E(p/2) < N[C**(p)+ C(p)+ C'*(p) D**(p) + F(p)).
Here N is a positive constant independent of 6, p and xy.
Proof. Let r = 0p. By Holder’s inequality,
A(r) < C¥3(r) < NO72C%3(p).

To estimate E(r), in the energy inequality (2-3) we choose a suitable
smooth cut-off function ¢ = ¢, € C§°(B(xg, p)) such that

0 <¢1 <1inB(zo,p), 1 =11inB(z,p/2)
(3.9) V| < Npt, [V < Np~2 in B(xo, p).

By using (B.2) and because u is divergence free, we get

N1l
E(r) < [—/ |u|? d
B(wo,p)

1
s [ (P 2o B Dluldat [l da].
P JB(wop)

B(z0,p)
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Due to the Holder inequality and Young’s inequality, one obtains

2/3 1/3
/ lul? dz < (/ lul? dz) / (/ dx) /< piC*3(p).
B(z0,p) B(zo,p)

B(zo,p)

And

/ 1D — (Hlao ] de
B(zo,p)

<[ AP ([ )
B(z0,p)

B(zo,p)

< Np*D*3(p)C3(p).

Furthermore

1
[ liflars g [ updess [ (ppa
B(x0,p) P J B(zo,p) B(x0,p)
Then, collecting these estimates, Lemma B.3 thus follows. O

As a conclusion of this subsection, we obtain

Proposition 3.4. For any small g > 0, there exists 1 = €1(gg) > 0
small such that for any xo € Q satisfying

(3.10) limsup E(r) < ey,
rl0
we have
(3.11) A(po) + E(po) + C(po) + D(po) < o,

provided that pg is sufficiently small.

Proof. For a given xy € Q satisfying (B.1(), choose p; > 0 such that
B(xg,p1) C Q. Then for any p € (0, p1], by using (B.§) and Young’s
inequality

A(vp) + E(yp) < N[C**(2yp) + C(2yp) + D(27vp) + F(27p)].
This estimate, (B.]]) and (B-2), with v € (0, 1/6), together with Young’s
inequality again implies
(3.12)  A(vp) + E(vp) + Cvp) + D(p)

<N [Y*C*(p) + 7" D(p) ++°C(p) + 7> A(p)]
+ Ny [E(p) + E*(p) + F(p)] + N+
< Nv*[A(p) + E(p) + C(p) + D(p)] + Nv*
+ Ny [E(p) + E*(p) + F(p)] -
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Since f € Lgoc, by Holder’s inequality, we have

(3.13) F(p) < L aBopnP

It is easy to see that for any ¢y > 0, there are sufficiently small real
numbers v < 1/v/2N and ¢, such that if (5.I0) holds then for all small
p we have

Ny? + Ny™(E(p) + E%(p) + F(p)) < €0/2-
By using (B.13), we reach (B.11)) for some py > 0 small enough. O

3.2. Step 2. In the second step, first we will estimate the values of A,
E and D in a smaller ball by their values in a larger ball. Note that in
this subsection all of the quantities implicitly depend upon the point
x1 as A(r) = A(r, z1) unless it says so otherwise.

Lemma 3.5. Fiz constants p > 0, 8 € (0,1/3] and B(xy,p) C €.
Then we have
(3.14) A(0p) + E(0p) < N6*A(p)

+ N0 ([A(p) + E(p)]** + D(p)) + NO™°F(p).
where N > 0 is independent of p, 6 and z;.

Proof. We prove the lemma by using a suitably chosen test function in
the generalized local energy inequality (2.2). Let r = 6p. We define

o) = (r* + |z — 21 *) 72,
which clearly satisfies Aty = —247r%(r? + |z — 21|*)™* so that
(3.15) Ay <0 in R®, Agp<—cr™® in B(x,p),

for some constant ¢ > 0 independent of r.

In the energy inequality (B.9) we choose ¢ = 1119, where 1)y is taken
from (B.9) in the proof of Lemma B.3 with the center x; in place of z.
Then we have

(3.16) —/ \u\%A%de/ IVl s da
B(xlvp)

B(Z‘Lp)

< / {lul* (V291 + 2V - Vo)
B(z1,p)

+ ([ul® +2(p = [Aloy o)) - (1 Vipa + 2 Vi) + f - uthiifs} da.

After some straightforward computations, from (B.9) and (B.17), it is
easy to see the following properties:

(i) For some constant ¢ > 0, on B(xy,r) it holds that
Uity = Py > er™t = Ahy = —Aghy > er ™"
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(ii) In B(x1, p), we have
1o < Nr7hy [ Vibo| + |12 Vihr| < Nr72,
[ Aty | 4 [Vapy - Vipa| < Np~°.

These properties together with (B-16), the Young and Holder inequali-
ties, yield

(3.17)  A(r) + E(r) < N[0*A(p) + 07*(C(p) + D(p)) + 0~"F (p)]-
Owing to the Sobolev inequality (R.3), one easily gets

(3.18) C(p) < N[A(p) + E(p)]**.

Upon combining (BI7) and (B1§), the lemma is proved. O

Lemma 3.6. Suppose p > 0 is constant and B(xy,p) C Q. Then we
can find a 01 € (0,1) small, where 0; does not depend upon p, such that

(319) Arp) + E(6up) + D”*(010) < 1[A(p) + Elp) + D**(p)]

+ N(61) [A(p) + E(p) + D**(0)]* + N(6)[F(p) + FV*(p)],

where N is a constant independent of p and x;.
Proof. Due to (B.2) and (B.I4), for any ~,0 € (0,1/3], we have
D*3(0p) < N[v*D**(0p) + 2 F'*(0p) + v E(6p)]
< N6 D (p) + Ny 2 F V() + Ny 6 A(p)
(320)  + Ny 207 [A(p) + E(p) + D**(p)] " + Ny207°F (p),
and from (BI4]) we have
(3.21) A(v8p) + E(v8p) < N(76)*A(p)
+N(40)*[A(p) + E(p) + D**(p)]** + N(+0) " F(p).
Now we choose and fix 6 sufficiently small and v = 6%/ such that
N2072 +9720% + (10)*] < NO*°> < 1/8.
Upon adding (B-20) and (B.21]), we obtain
A(v6p) + E(~6p) + D**(v8p)
[A(P) +D*3(p)] + N[A(p) + E(p) + D**(p)]*/?

+ N[F(p)+ F'*(p)],

where N depends only on 6 and ~. After putting #; = 6, the lemma
is proved. 0
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In the next proposition we will study the decay property of A, E, C'
and D as the radius p goes to zero.

Proposition 3.7. There exists e > 0 satisfying the following property.
Suppose that for some xo € 2 and py € (0,1) satisfying B(xo, po) C €2
we have

(3.22) C(po, o) + D(po, xo) + F(po, zo) < €o.

Then we can find N > 0 and ap € (0,1) such that for any p € (0, po/8)
and x1 € B(xg, po/8), the following inequality will hold uniformly

(323)  A(p,z1) + E(p,a1) + C*(p, 1) + D*(p,21) < Np™,
where N is a positive constant independent of p and x;.

Proof. Fix the constant 6; from Lemma B.g. Due to (B-§), (B.3) and
(B-23), we may first choose ¢’ > 0 then gy = g¢(&’) > 0 sufficiently small
such that

8/

Alpo/4,70) + Elpo/4,0) + D**(po/4, 70) < =

and
(3.24) N(6)Ve' < 1/4, N(61)(go +e/*) < &'/2.

where N(6;) > 0 is the same constant from (B.19). Since we suppose
that x1 € B(xo, po/8), we then have

B(x1, po/8) C B(wo, po/4) C £,
and then
©(po) = Alpo/8, 1) + E(po/8,21) + D**(po /8, 21) < &'

By using (B:24) and (B.I9) with p = po/8 we obtain inductively that
(05 p0) = A(B1p0/8,11) + E(B1po/8, 1) + D¥* (@1 po/8, 1) < €.
(Holding for k£ = 1,2,...). It then similarly follows from (B.24) and

(B-19) that

(3.25) p(01p0) < (07" po) + Ni(0) " po)*.

Above, thanks to (B-IJ), we have used the estimate

F(0 " po/8,m1) + F'2(67 " po/8,21) < Ni(lf | a(Baowor2))) (01" p0)”

Now we use a standard iteration argument to obtain the Holder con-
tinuity of ¢. We have to be a bit careful however because we do not

N —
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make the standard assumption that ¢(p) should be a non-decreasing
function. We iterate (B.25) to obtain

p(B7p0) < (%)k ©(po) + N1p3§ (%)j (05 )?

1\* 2Ny,
< |- —_— .
_QJ P@@+1_%m]
In the last inequality, without loss of generality we have used that 8; €

(0,1/2]. Since p € (0, py/8) we can find & such that 0§22 < p < Qlf_l%o.
Then

Alp,a1) + B(p,a1) + D**(p, 1) < 07 "(07" po)

1\* 2N, o\
<2074 = T R <N([E .
< (3) [rtw = 1550] = ()
In this last line N = N (0, ¢(po), N1, po) and oy = % > 0. This
yields (B:23) for the terms A, E and D. The inequality for C(p, 1)

follows from (B.1§). O

3.3. Step 3 — Proofs of Theorems R.1H2.3. In the final step, we
are going to use a bootstrap argument to successively improve the
decay estimate (B.23). However, as we will show below, the bootstrap
argument itself only gives the decay of E(p) no more than p?, i.e. one
can obtain an estimate like

/ \Vul|?dz < N(e)p*™=, Ve >0,
B(Z‘Lp)

for any p sufficiently small. Unfortunately, this decay estimate is not
enough for the Holder regularity of u since the dimension is six (so that
we need the exponent 4 + ¢ instead of 4 — ¢ according to the Morrey
lemma). Then to fill in this gap we will use the elliptic theory.

First we prove Theorem P.9. We begin with the bootstrap argument.
We will choose an increasing sequence of real numbers {a; }72, € (o, 2)
such that for any small § > 0 we can find an integer m = m(§) with
the property that «,, > 2 — 9.

For a fixed § > 0 and m = m(¢), under the condition (R.3), we claim
that the following estimates hold uniformly for all p > 0 sufficiently
small and x, € B(x, po/8) over the range of {ay}i:

(3.26) A(p,a1) + Elp, 1) < No™,
C(p7x1> < Npgak/27 D<p7 xl) < Npgak/2’
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(]

We prove this via iteration. The k = 0 case for (B.2G) with oy was
proven in (B.23).

We first estimate A(p, ;) and E(p,z1). Let p = 0 where § = p*,
p=p~*and u € (0,1) to be determined. We use Lemma 5. and then
(B:29) (for ay) to obtain

Alp) +E(p) <N (p2u+ak(1—u) + p%ak(l—u)—i’w + p4(1—u)—6u> )

Choose pi = 157&—, then (B28) is proven for A(p) + E(p) with the
exponent of

12
10 + ay

Then the estimate in (3:20) (with a11) for C(p, z1) follows from (BI§).
To prove the estimate in (B:2q) (after level k) for D(p, z1) we will use
Lemma B.2. From (B.2) we obtain

D(yp,x1) < N (v2D(p, 21) + v 2p* 5172 4+ 473p%) |

The estimate used here for F(p) follows from (B.I3). Now for any r
small, we take the supremum on both sides with respect to p € (0,r)
and get

Opy1 = o € (Ozk,Q).

sup D(yp,21) < Nv*% sup D(p,x1) + Ny 3pdeet/2 4 Ny=3p3,
pE(0,r] pe(0,r]
Since 9/2 > 3 > %akﬂ, by using a well-known iteration argument,
similar to (B:29) (or see e.g., [[J, Chap. 3, Lemma 2.1]), we obtain the
estimate in (B:24) (with ayy1) for D(p). Then we have shown how to
build the increasing sequence of {cy,} for which (B:26) holds. Moreover,

10 10
(2 - ak)?

2 = ———(2—ay) <
W = T e 2T %) S T30
which implies that o — 2 as k — oo. Note that by the above proof,
the constant NV in (B.2§) may go to infinity as k — oo; thus we truncate
at level m < oo.
In particular, (B-2q) with k = m gives for any small 6 = §(m) > 0
that

(3.27) / lu|? de < Np&=°,
B(z1,p)

(3.28) / il 4 [p — [Rloy o2 d < N5 5.
B(z1,p)

We obtained these estimates via the bootstrap argument, next we will
use the elliptic theory to improve them.
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Now we fix a § € (0,1/10) and rewrite ([.1)) (in the sense of distri-
butions) into
Au; = Dj(usu;) + Dip — fi.
Finally, we use the classical elliptic theory to complete the proof.
Thanks to (B.21), there exists p; € (p/2, p) such that

(3.29) / lu|? dz < Np°~°,
S(z1,p1)

Let v be the unique H'! solution to the Laplace equation
AUZ'IO in B(Il,pl),

with the boundary condition v; = u; on S(z1,p;). It follows from the
standard estimates for harmonic functions, Hdélder’s inequality, and

(B) that

(3.30) sup |Vl < Nﬂfﬁ/ o] dw < Np~' 72,
B(z1,01/2) S(z1,p1)

Denote w = uw — v € H'(B(x1,p1)). Then w satisfies the Poisson
equation

Awi = D](UZ’UJ]) + Dl(p - [h];php) - fz in B(xlvpl)-

with zero boundary condition on S(zy,p1). By the classical L, esti-
mates for the Poisson equation, we have

VWl Ls)n(B@10)) <N H|u|2HL3/2(B(x1,pl))
+Nlp— [h]xlyp||L3/2(B(x1,p1)) + Np, ||f||L3/2(B(x17p1)) :
This together with the assumption on f and (B:2§) gives
(3.31) IVW|Ly 0By < Np* 0+ Np* < Np*~°.
Since |Vu| < |[Vw| + |Vv|, we combine (B-3() and (B-31)) to obtain, for
any r € (0, p/4), that

/ |Vu|3/2 dr < Np6—35/2 +N7’6p_3/2_35/4.
B(z1,r)

Upon taking r = p°/4=9/8 /4 (with p small), we get
(3.32) / |Vul>?dx < NP,
B(z1,r)

where 5/
6 —30/2

= —3/2.

b=sma—om 6%
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Since (B.32) holds for arbitrary x; € B(xg, po/8) and all r small, by
the Morrey lemma (see for instance [[J, Theorem 1.1 on p. 64 of Ch.
I11]), u is Hélder continuous in a neighborhood of . This completes
the proof of Theorem P.3.

Theorem R.] then follows from Theorem P.3 by applying Proposition
B-4. Finally, Theorem P.3 is deduced from Theorem P.] by using the
standard argument in the geometric measure theory, which is explained
for example in [}, or alternatively in [[J].

Remark 3.8. Finally we remark that by using the same method we can
get an alternative proof of Theorem [[.] for the 5D steady-state Navier-
Stokes equations if we assume that f € Ls),.. However, it seems to
us that six is the highest dimension to which our approach (or any
existing approach) applies. In fact, by the Sobolev imbedding theorem,
L3(R%) — H'(R®). So the nonlinear term in the energy inequality can
be controlled by the energy norm when d = 6 but not higher.
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