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Abstract

We consider both soft potentials with angular cutoff and Landau collision ker-
nels in the Boltzmann theory inside a periodic box. We prove that any smooth
perturbation near a given Maxwellian approaches zero at the rate of e−λt p

for
some λ > 0 and 0 < p < 1. Our method is based on an unified energy estimate
with appropriate exponential velocity weight. Our results extend the classical result
Caflisch of [2] to the case of very soft potential and Coulomb interactions, and
also improve the recent “almost exponential” decay results by [5, 14].

1. Introduction

In this article, we are concerned with soft potentials and Landau collision ker-
nels in the Boltzmann theory for dynamics of dilute particles in a periodic box.
Recall the Boltzmann equation as

∂t F + v · ∇x F = Q(F, F), F(0, x, v) = F0(x, v), (1)

where F(t, x, v) is the spatially periodic distribution function for the particles at
time t � 0, position x = (x1, x2, x3) ∈ T

3 and velocity v = (v1, v2, v3) ∈ R
3. The

left-hand side of this equation models the transport of particles and the operator on
the right-hand side models the effect of collisions on the transport

Q(F,G) ≡
∫

R3×S2
|u − v|γ B(θ){F(u′)G(v′)− F(u)G(v)}dudω.

Here F(u) = F(t, x, u) etc. The exponent is γ = 1 − 4
s with 1 < s < 4; we

assume

−3 < γ < 0,
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(soft potentials) and B(θ) satisfies the Grad angular cutoff assumption

0 < B(θ) � C | cos θ |. (2)

Moreover, the post-collisional velocities satisfy

v′ = v + [(u − v) · ω]ω, u′ = u − [(u − v) · ω]ω, (3)

|u|2 + |v|2 = |u′|2 + |v′|2 (4)

and θ is defined by cos θ = [u − v] · ω/|u − v|.
On the other hand, the Landau equation is formally obtained in a singular limit

of the Boltzmann equation. It can also be written as (1) but the collision operator
is given by

Q(F,G) = ∇v ·
{∫

R3
φ(v − u)[F(u)∇vG(v)− G(v)∇u F(u)]du

}

=
3∑

i, j=1

∂i

∫
R3
φi j (v − u)[F(u)∂ j G(v)− G(v)∂ j F(u)]du,

where ∂i = ∂vi etc. The non-negative matrix φ is given by

φi j (v) =
{
δi j − viv j

|v|2
}

|v|2+γ .

We assume soft potentials, which means −3 � γ < −2 in this case. The original
Landau collision operator with Coulombic interactions corresponds to γ = −3.

Denote the steady state Maxwellian by

µ(v) = (2π)−3/2e−|v|2/2.

We perturb around the Maxwellian as

F(t, x, v) = µ(v)+√µ(v) f (t, x, v).

Then the initial value problem (1) can be rewritten as

[∂t + v · ∇x ] f + L f = 	[ f, f ], f (0, x, v) = f0(x, v), (5)

where L is the linear part of the collision operator, Q, and 	 is the nonlinear part.
For the Boltzmann equation, the standard linear operator [6] is

Lg = ν(v)g − K g, (6)

where the collision frequency is

ν(v) =
∫

B(θ)|v − u|γ µ(u)dudω. (7)

The operators K and 	, in the Boltzmann case, are defined in (19), (20) and (34).
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For the Landau equation, the linear operator [9] is

Lg = −Ag − K g, (8)

with A, K and 	 defined in (47), (48) and (49 ). The Landau collision frequency is

σ i j (v) = φi j ∗ µ =
∫

R3
φi j (v − u)µ(u)du. (9)

We remark that σ i j (v) is a positive self-adjoint matrix [4].
Notation: Let 〈·, ·〉 denote the standard L2(R3) inner product. We also use (·, ·)

to denote the standard L2(T3 × R
3) inner product with corresponding L2 norm

‖ · ‖. Define a weight function in v by

w = w(�, ϑ)(v) ≡ (1 + |v|2)τ�/2 exp
(q

4
(1 + |v|2) ϑ2

)
. (10)

Here τ < 0, � ∈ R, 0 < q and 0 � ϑ � 2. Denote weighted L2 norms as

|g|2�,ϑ ≡
∫

R3
w2(�, ϑ)|g|2dv, ||g||2�,ϑ ≡

∫
T3

|g|2�,ϑdx .

For the Boltzmann equation, define the weighted dissipation norm as

|g|2ν,�,ϑ ≡
∫

R3
w2(�, ϑ)ν(v)|g(v)|2dv, (11)

||g||2ν,�,ϑ ≡
∫

T3
|g|2ν,�,ϑdx .

For the Landau equation, define the weighted dissipation norm as

|g|2σ ,�,ϑ ≡
3∑

i, j=1

∫
R3
w2(�, ϑ)

{
σ i j∂i g∂ j g + σ i j vi

2

v j

2
|g|2
}

dv, (12)

||g||2σ ,�,ϑ ≡
∫

T3
|g|2σ ,�,ϑdx .

Since our proof of decay does not depend upon detailed properties which are spe-
cific to either dissipation norm, sometimes we unify the notation as ||g||D,�,ϑ , which
denotes either ||g||ν,�,ϑ or ||g||σ ,�,ϑ . If ϑ = 0 then we drop the index, for example
||g||D,�,0 = ||g||D,� and the same for the other norms.

Next define a high order derivative

∂αβ ≡ ∂α
0

t ∂α
1

x1
∂α

2

x2
∂α

3

x3
∂β

1

v1
∂β

2

v2
∂β

3

v3
,

where α = [α0, α1, α2, α3] is the multi-index related to the space-time derivative
and β = [β1, β2, β3] is the multi-index related to the velocity derivatives. If each
component of β is not greater than that of β1’s, we denote by β � β1; β < β1

means β � β1 and |β| < |β1|. We also denote

(
β

β1

)
by Cβ1

β .
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Fix N � 8 and l � 0. An “instant energy functional” satisfies

1

C
El,ϑ (g)(t) �

∑
|α|+|β|�N

||∂αβ g(t)||2|β|−l,ϑ � CEl,ϑ (g)(t). (13)

If g is independent of t � 0, then the temporal derivatives are defined through
equation (5). Further, the “dissipation rate” is given by

Dl,ϑ (g)(t) ≡
∑

|α|+|β|�N

||∂αβ g(t)||2D,|β|−l,ϑ . (14)

We will also write El,0(g)(t) = El(g)(t) and Dl,0(g)(t) = Dl(g)(t). We note from
(10) that for l > 0 these norms contain a polynomial factor (1 + |v|2)−τ l/2. The
weight factor (1 + |v|2)τ |β|/2 (dependent on the number of velocity derivatives) is
designed to control the streaming term v · ∇x f .

If initially F0(x, v) = µ(v) + √
µ(v) f0(x, v) has the same mass, momentum

and total energy as the Maxwellian µ, then formally for any t � 0 we have
∫

T3×R3
f (t)µ1/2 =

∫
T3×R3

vi f (t)µ1/2 =
∫

T3×R3
|v|2 f (t)µ1/2 = 0. (15)

We are now ready to state the main result.

Theorem 1. Let N � 8, l � 0, 0 � ϑ � 2 and 0 < q. If ϑ = 2, then further
assume q < 1. Choose initial data F0(x, v) = µ(v) + √

µ(v) f0(x, v) such that
f0(x, v) satisfies (15). In (10), for the Boltzmann case assume τ � γ and for the
Landau case assume τ � −1.

Then there exists an instant energy functional El,ϑ ( f )(t) such that if El,ϑ ( f0)

is sufficiently small, then the unique global solution to (1) in both the Boltzmann
case and the Landau case satisfies

d

dt
El,ϑ ( f )(t)+ Dl,ϑ ( f )(t) � 0. (16)

In particular,
sup

0�s�∞
El,ϑ ( f )(s) � El,ϑ ( f0). (17)

Moreover, if ϑ > 0, then there exists λ > 0 such that

El( f )(t) � Ce−λt pEl,ϑ ( f0),

where in the Boltzmann case

p = p(ϑ, γ ) = ϑ

ϑ − γ
,

and in the Landau case

p = p(ϑ, γ ) = ϑ

ϑ − (2 + γ )
.
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In the second authors papers [9, 10], (16) was established with τ = γ in the
Boltzmann case, τ = 2 + γ in the Landau case and ϑ = l = 0. We extended (16)
to the case l � 0 in [14]. There we used (16) and (17) to establish the following
theorem via direct interpolation for ϑ = 0.

Theorem 2. Assume everything from Theorem 1 and fix k > 0. In addition, if
El+k,ϑ ( f0) is sufficiently small then

El,ϑ ( f )(t) � Cl,k

(
1 + t

k

)−k

El+k,ϑ ( f0).

For ϑ > 0, the proof of Theorem 2 is exactly the same as in [14]. Even though,
in [14], Coulomb interactions (γ = −3) are assumed for the Landau case the proof
of Theorem 2 works exactly the same for τ � −1 and −3 � γ < −2. However
we remark that for τ < 2 + γ in the Laudau case, the interpolations used to prove
Theorem 2 are not optimal.

The main difficulty in proving any kind of decay for soft potentials is caused
by the lack of a spectral gap for both linear operators (6) and (8). In the Boltzmann
case, the dominant part of the linear operator (6) is of the form

1

C
(1 + |v|2)γ /2 � ν(v) � C(1 + |v|2)γ /2, C > 0, for γ < 0. (18)

From another point of view, at high velocities the dissipation is much weaker than
the instant energy. However, Theorem 1 and Theorem 2 show that given explicit
control over f (t, x, v) at high velocities, no matter how weak, we can obtain a pre-
cise decay rate. On the other hand, it is difficult to construct solutions with a weight
stronger than (10) with ϑ = 2. From this point of view, Theorem 1 and Theorem 2
together form a rather satisfactory theory of convergence rates to Maxwellian for
soft potentials and Landau operators, in a context close to equilibrium.

The constants in our estimates are certainly not optimal or explicit in all cases.
However, p = ϑ

ϑ−γ comes from the following simplification of the Boltzmann
equation [1]:

∂t f (t, |v|)+ |v|γ f (t, |v|) = 0, −3 < γ < 0, |v| > 0.

Consider initial data with rapid decay as required by our norms

f (0, |v|) = e−c|v|ϑ , c > 0, 0 < ϑ � 2.

Then the solution to this system is exactly

f (t, |v|) = e−c|v|ϑ−t |v|γ .

By splitting into {|v| � t p/ϑ } and {|v| < t p/ϑ } one can show that

c0e−c1t p �
∫

|v|>0
| f (t, |v|)|2d|v| � c2e−c3t p

,

with ci > 0 (i = 0, 1, 2, 3).



Robert M. Strain & Yan Guo

The study of trend to Maxwellians is important in kinetic theory both from phys-
ical and mathematical standpoints. In a periodic box, it was Ukai [17] who obtained
exponential convergence (with p = 1), and hence constructed the first global in
time solutions in the spatially inhomogeneous Boltzmann theory. He treated the
case of a cutoff hard potential. In 1980, Caflisch [1, 2] established exponential
decay (with the same p(2, γ )) as well as global in time solutions for the Boltzmann
equation with potentials which are not too soft ( −1 < γ < 0). About the same
time, in the whole space setting, also for cutoff soft potentials with γ > −1, Ukai
and Guo [18] obtained the rate O(t−α) with 0 < α < 1; their optimal case in
R

3 yields α = 3/4. In these early investigations, a sufficiently fast time decay of
the linearized Boltzmann equation around a Maxwellian played the crucial role in
bootstrapping to the full nonlinear dynamics. For the soft potentials, such linear
decay estimates can be very difficult and delicate. It has thus been an open problem
to study the decay property as well as to construct global in time smooth solutions
for very soft potentials with γ near −3.

Recently, a nonlinear energy method for constructing global solutions was
developed by Guo to avoid using the linear decay. Indeed, by showing the lin-
earized collision operator was always positive definite along the full nonlinear
dynamics, global in time smooth solutions near Maxwellians were constructed for
all cutoff soft potentials of −3 < γ < 0 [10], even for the Landau equation with
Coulomb interaction [9]. However, the time decay of such solutions was left open.
See [8, 11–13, 15, 16] for more applications of such a method.

From a completely different approach, Desvillettes and Villani [5] have
recently developed a framework to study the trend to Maxwellians for general
smooth solutions, not necessarily near any Maxwellian. As an application, their
method leads to the almost exponential decay rates (i.e., faster than any given poly-
nomial) for smooth solutions constructed earlier by the for all cutoff soft potentials
and the Landau equation.

Inspired by such a striking result, in [14] we re-examined and improved the
energy method to give a more direct proof of such almost exponential decay in the
close to Maxwellian setting. We introduced a family of polynomial velocity weight
functions and used some simple interpolation techniques. It is interesting to note
that our decay estimate is a consequence of the weighted energy estimate for the
global nonlinear solution, not the other way around as in earlier methods [1, 2, 17,
18]. It is clear from our analysis that a stronger velocity weight yields faster time
decay. On the other hand, the time decay rate could be very slow without additional
velocity weight, as seen in [3].

It is thus very natural to try to use exponential velocity weight functions to get
exponential time decay, which is the main purpose of our current investigation. The
key is to show that the new energy with an exponential velocity weight is bounded
for all time. In order to carry out such an energy estimate, we follow the general
framework and strategy in [10, 9, 14]. However, many new analytical difficulties
arise and we have to develop new techniques accordingly. The main difficulty lies in
the estimates for linearized collision operators around Maxwellians. The presence
of the exponential weight factor exp{ q

4 (1 + |v|2)ϑ/2} in (10) requires much more
precise estimates at almost all levels. In the case of a cutoff soft potential, a careful
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application of the Caflisch estimate (Lemma 1) is combined with the splitting trick
in [10] to treat the very soft potential of −3 < γ � −1.Furthermore, to estimate the
trickiest terms in Lemma 2, we found a version of energy conservation (4) for the
variables (23) in the Hilbert–Schmidt form for K in (31). On the other hand, in the
Landau case, an extra v factor from the derivative of the weight exp{ q

4 (1+|v|2)ϑ/2}
creates the most challenging difficulty to close the estimate in the same norm. We
have to use different weight functions (that appeared in the norm (12)), very pre-
cisely to balance between the derivative part σ i j∂i g∂ j g and the no derivative part
σ i j vi

2
v j
2 |g|2 in Lemma 8. Thus τ � −1 is assumed. Moreover, in Lemma 9, we

have to introduce a new splitting of the linear Landau operator in the ϑ = 2 case
where q < 1 is crucially used.

The paper is organized as follows. In Section 2, we establish the estimates
with the exponential weight (10) for the Boltzmann equation. In Section 3, we
establish estimates with weight (10) for the Landau equation. Finally, in Section 4
we establish the crucial energy estimate uniformly for both cases. Some details
are exactly the same as in [9, 10, 14]. We will sketch these details which can be
found elsewhere. Finally, we prove exponential decay in Section 5 using the global
bound (17).

2. Boltzmann Estimates

In this section, we will prove the basic estimates used to obtain global existence
of solutions with an exponential weight in the Boltzmann case. These estimates
are similar to those in [10], but here the exponential weight which was not present
earlier forces us to modify the proofs and some of the estimates. We will use the
classical soft potential estimate of Caflisch [1] (Lemma 1) with v derivatives to
estimate the linear operator (Lemma 2). We discuss the new features of each proof
after the statement of each Lemma.

Recall K and 	 from (6) and (5). K = K2 − K1 is defined as [6, 7]:

[K1g](v) =
∫

R3×S2
B(θ)|u − v|γ µ1/2(u)µ1/2(v)g(u)dudω, (19)

[K2g](v) =
∫

R3×S2
B(θ)|u − v|γ µ1/2(u)µ1/2(u′)g(v′)dudω

+
∫

R3×S2
B(θ)|u − v|γ µ1/2(u)µ1/2(v′)g(u′)dudω.

(20)

Consider a smooth cutoff function 0 � χm � 1 such that (for m > 0)

χm(s) ≡ 1, for s � 2m; χm(s) ≡ 0, for s � m. (21)

Then define χ̄m = 1 − χm . Use χm to split K2 = K χ
2 + K 1−χ

2 , where

K χ
2 g ≡

∫
R3×S2

B(θ)|u − v|γ µ1/2(u)χm(|u − v|)µ1/2(u′)g(v′)dudω

+
∫

R3×S2
B(θ)|u − v|γ µ1/2(u)χm(|u − v|)µ1/2(v′)g(u′)dudω.
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After removing the singularity at u = v, following the procedure in [6, 7] (see also
equations. (35) and (36) in [10]), we can write

K χ
2 g =

∫
R3

kχ2 (v, ξ)g(v + ξ)dξ,

where

kχ2 (v, ξ) ≡ e− 1
8 |ξ |2− 1

2 |ζ‖|2

|ξ |√π3/2

∫
R2

χm(
√|ξ |2 + |ξ⊥|2)

(|ξ |2 + |ξ⊥|2) 1−γ
2

e− 1
2 |ξ⊥+ζ⊥|2 B(θ)

| cos θ |dξ⊥.

(22)
The integration variables are dξ⊥ = dξ1⊥dξ2⊥ but ξ⊥ = ξ1⊥ξ1 + ξ2⊥ξ2 ∈ R

3 where

{ξ1, ξ2, ξ/|ξ |} is an orthonormal basis for R
3 . Also

ζ‖ = (v · ξ)ξ
|ξ |2 + 1

2
ξ, ζ⊥ = v − (v · ξ)ξ

|ξ |2 = (v · ξ1)ξ1 + (v · ξ2)ξ2. (23)

This formulation is well suited for taking high order v-derivatives. Caflisch [1]
proved Lemma 1 below with no derivatives. In contrast, we have already removed
the singularity in K χ

2 . We extend the estimate from −1 < γ < 0 to the full range
−3 < γ < 0. As in [10], we will see in Lemma 2 that the singular part of K2,
K 1−χ

2 , has stronger decay.

Lemma 1. For any multi-index β and any 0 < s1 < s2 < 1,

∣∣∂βkχ2 (v, ξ)
∣∣ � C

exp
(− s2

8 |ξ |2 − s1
2 |ζ|||2}

)
|ξ |(1 + |v| + |ξ + v|)1−γ .

Here C > 0 will depend on s1, s2 and β.

Proof. Fix 0 < s1 < s2 < 1. If |β| > 0, from (22) and (23) we have

∂βkχ2 (v, ξ) = e− 1
8 |ξ |2

|ξ |√π3/2

∫
R2

χm(
√|ξ |2 + |ξ⊥|2)

(|ξ |2 + |ξ⊥|2) 1−γ
2

∂β

(
e− 1

2 |ξ⊥+ζ⊥|2− 1
2 |ζ‖|2

)

× B(θ)

| cos θ |dξ⊥.

Recalling (23) and by a simple induction, for any 0 < q ′ < 1, we have

∣∣∣∂β
(

e− 1
2 |ξ⊥+ζ⊥|2− 1

2 |ζ‖|2
)∣∣∣ � C(|β|, q ′)e− q′

2 |ξ⊥+ζ⊥|2− q′
2 |ζ‖|2 .

Further restrict q ′ > s1. For |β| � 0, using the last display and (2) we have

∣∣∂βkχ2 (v, ξ)
∣∣ � C

e− 1
8 |ξ |2

|ξ |
∫

R2

χm(
√|ξ |2 + |ξ⊥|2)

(|ξ |2 + |ξ⊥|2) 1−γ
2

e− q′
2 |ξ⊥+ζ⊥|2− q′

2 |ζ‖|2 dξ⊥.
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Notice that from (23), ζ⊥ is independent of the integration variable ξ⊥. Change
variables ξ⊥ → ξ⊥ − ζ⊥ on the right-hand side to obtain

C
e− 1

8 |ξ |2− q′
2 |ζ‖|2

|ξ |
∫

R2

χm(
√|ξ |2 + |ξ⊥ − ζ⊥|2)

(|ξ |2 + |ξ⊥ − ζ⊥|2) 1−γ
2

e− q′
2 |ξ⊥|2 dξ⊥.

Using (21), then, we have

∣∣∂βkχ2 (v, ξ)
∣∣ � C(m)

e− 1
8 |ξ |2− q′

2 |ζ‖|2

|ξ |
∫

R2

e− q′
2 |ξ⊥|2 dξ⊥(

1 + |ξ |2 + |ξ⊥ − ζ⊥|2) 1−γ
2

. (24)

In the rest of the proof, we will refine this estimate by further splitting the integration
region.

Choose any q ′′ > 0 with q ′′ < s1 and then define τ∗ =
√

q ′−s1
q ′−q ′′ < 1. Split the

integration region as follows

{|ξ⊥| > τ∗|ζ⊥|} ∪ {|ξ⊥| � τ∗|ζ⊥|}.
Further split the right-hand side of (24) into kχ,12 (v, ξ)+kχ,22 (v, ξ), where kχ,12 (v, ξ)

is restricted to the region {|ξ⊥| > τ∗|ζ⊥|}:

kχ,12 (v, ξ) ≡ C(m)
e− 1

8 |ξ |2− q′
2 |ζ‖|2

|ξ |
∫

|ξ⊥|>τ∗|ζ⊥|
e− q′

2 |ξ⊥|2 dξ⊥(
1 + |ξ |2 + |ξ⊥ − ζ⊥|2) 1−γ

2

.

For kχ,12 (v, ξ)we will observe exponential decay. And for kχ,22 (v, ξ)we can extract
from the denominator on the right-hand side of (24) the exact decay stated in
Lemma 1.

First consider kχ,12 (v, ξ). Since {|ξ⊥| > τ∗|ζ⊥|} and q ′ − q ′′ > 0 we have

∣∣∣kχ,12 (v, ξ)

∣∣∣ � C
e− 1

8 |ξ |2− q′
2 |ζ‖|2

|ξ |
∫

{|ξ⊥|>τ∗|ζ⊥|}
e− q′′

2 |ξ⊥|2− q′−q′′
2 |ξ⊥|2

(
1 + |ξ |2 + |ξ⊥ − ζ⊥|2) 1−γ

2

dξ⊥

� C
e− 1

8 |ξ |2− q′
2 |ζ‖|2

|ξ |
∫

{|ξ⊥|>τ∗|ζ⊥|}
e− q′′

2 |ξ⊥|2− q′−s1
2 |ζ⊥|2

(
1 + |ξ |2 + |ξ⊥ − ζ⊥|2) 1−γ

2

dξ⊥.

By (23),
|ζ‖|2 + |ζ⊥|2 = |ζ‖ + ζ⊥|2 = |v + ξ/2|2.

Splitting q ′ = s1 + (q ′ − s1) we have

∣∣∣kχ,12 (v, ξ)

∣∣∣ � C

|ξ |e− 1
8 |ξ |2− s1

2 |ζ‖|2
∫

{|ξ⊥|>τ∗|ζ⊥|}
e− q′′

2 |ξ⊥|2− q′−s1
2 (|ζ⊥|2+|ζ‖|2)

(
1 + |ξ |2 + |ξ⊥ − ζ⊥|2) 1−γ

2

dξ⊥

� C

|ξ |e− 1
8 |ξ |2− s1

2 |ζ‖|2− q′−s1
2 |v+ξ/2|2 .
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This will be more than enough decay. We expand

|v + ξ/2|2 = |v|2 + 1

4
|ξ |2 + v · ξ = 1

4
|v + ξ |2 + 3

4
|v|2 + 1

2
v · ξ

� 1

4
|v + ξ |2 + 3

4
|v|2 − 1

4
|v|2 − 1

4
|ξ |2 (25)

= 1

4
|v + ξ |2 + 1

2
|v|2 − 1

4
|ξ |2.

Plug the last display into the one above it to obtain

∣∣∣kχ,12 (v, ξ)

∣∣∣ � C

|ξ |e− 1
8 |ξ |2− s1

2 |ζ‖|2 e− q′−s1
8 |v+ξ |2− q′−s1

4 |v|2+ q′−s1
8 |ξ |2

= C

|ξ |e− s1+1−q′
8 |ξ |2− s1

2 |ζ‖|2 e− q′−s1
8 |v+ξ |2− q′−s1

4 |v|2 .

Given s2 with s1 < s2 < 1, we can always choose q ′, restricted by s1 < q ′ < 1,
such that s2 = s1 + 1 − q ′. This completes the estimate for kχ,12 (v, ξ).

On {|ξ⊥| � τ∗|ζ⊥|}, |ζ⊥ − ξ⊥| � |ζ⊥| − |ξ⊥| � (1 − τ∗)|ζ⊥| (0 < τ∗ < 1).
Hence (24) over this region is bounded as

∣∣∣kχ,22 (v, ξ)

∣∣∣ � Ce− 1
8 |ξ |2− q′

2 |ζ‖|2

|ξ | (1 + |ξ |2 + (1 − τ∗)2|ζ⊥|2) 1−γ
2

∫
{|ξ⊥|�τ∗|ζ⊥|}

e− q′
2 |ξ⊥|2 dξ⊥

� Ce− 1
8 |ξ |2− s1

2 |ζ‖|2

|ξ | (1 + |ξ |2 + |ζ⊥|2 + |ζ‖|2
) 1−γ

2

= Ce− 1
8 |ξ |2− s1

2 |ζ‖|2

|ξ | (1 + |ξ |2 + |v + ξ/2|2) 1−γ
2

,

where we used s1 < q ′ to absorb some powers of |ζ‖|, going from the first line to
the second. Now plug (25) into the last display to complete the estimate. ��

Next we will prove the energy estimates for the linear operator (6).

Lemma 2. Let |β| > 0, � ∈ R, 0 � ϑ � 2 and 0 < q. If ϑ = 2 restrict 0 < q < 1.
Then for all η > 0∃C(η) > 0 such that

〈w2(�, ϑ)∂β [νg], ∂βg〉 �
∣∣∂βg

∣∣2
ν,�,ϑ

− η
∑

|β1|�|β|

∣∣∂β1 g
∣∣2
ν,�,ϑ

− C(η)
∣∣χ̄C(η)g

∣∣2
�
.

Furthermore, for any |β| � 0 we have

|〈w2(�, ϑ)∂β [K g1], g2〉| �

⎧⎨
⎩η

∑
|β1|�|β|

∣∣∂β1 g1
∣∣
ν,�,ϑ

+ C(η)
∣∣χ̄C(η)g1

∣∣
�

⎫⎬
⎭ |g2|ν,�,ϑ ,

where we are using (21).
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Some parts of the proof of Lemma 2 are exactly the same as in [10]. For instance,
the proof of the lower bound for 〈w2(�, ϑ)∂β [νg], ∂βg〉 is exactly the same. But
the estimate for |〈w2(�, ϑ)∂β [K g1], g2〉| requires extra care in particular because
g1 in the argument of [K g1] does not depend only on v. We therefore need to
control the new exponentially growing factor of w(�, ϑ)(v). This requires a close
look at the variables from (22) in (23). In particular, we write down the analog of
the conservation of energy (4) in this new coordinate system (31) in order absorb
the exponentially growing weight. For completeness, we present all details of the
proof.

Proof (The First Estimate in the Lemma).
Fix η > 0. Recall

〈w2∂β [νg], ∂βg〉 = 〈w2ν∂βg, ∂βg〉 +
∑

0<β1�β
Cβ1
β 〈w2∂β1ν∂β−β1 g, ∂βg〉.

By Lemma 2 in [9], for |β1| > 0,

|∂β1ν| � C(1 + |v|2) γ−1
2 .

We use this estimate (for m is chosen large enough) to obtain (since γ < 0)

〈w2∂β1ν∂β−β1 g, ∂βg〉 =
∫

|v|�m
+
∫

|v|�m

�
∫

|v|�m
+C

m

∣∣∂β−β1 g
∣∣
ν,�,ϑ

∣∣∂βg
∣∣
ν,�,ϑ

�
∫

|v|�m
+η

2

∣∣∂β−β1 g
∣∣
ν,�,ϑ

∣∣∂βg
∣∣
ν,�,ϑ

.

On the other hand, for such m > 0 and β − β1 < β, the first integral over |v| � m
is bounded by a compact Sobolev interpolation∫

|v|�m
� η

2

∑
|β1|=|β|

∣∣∂β1 g
∣∣2
ν,�

+ C(η)
∣∣χ̄C(η)g

∣∣2
ν,�
. (26)

This concludes the lower bound for 〈w2(�, ϑ)∂β [νg], ∂βg〉.
The Second Estimate in the Lemma. The proof of the second estimate is divided

into several parts. Recall K = K1 − K2.
Step 1: The Estimate for K1.
Next consider K1 from (19). We change variables u → u + v to obtain

[K1g1](v) =
∫

R3×S2
B(θ)|u|γ µ1/2(u + v)µ1/2(v)g1(u + v)dudω.

Notice that now cos θ = u · ω/|u| so that for |β| > 0, ∂β [K1g1](v)

=
∑
β1�β

Cβ1
β

∫
R3×S2

B(θ)|u|γ ∂β−β1

(
µ1/2(u + v)µ1/2(v)

)
∂β1 g1(u + v)dudω.
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For any 0 < q ′ < 1 we have

|∂β−β1{µ1/2(u + v)µ1/2(v)}| � C(|β|, q ′)µq ′/2(u + v)µq ′/2(v).

We will use this exponential decay to control half of the exponential growth in the
weight w. If 0 � ϑ < 2 then

w(�, ϑ)(v)µq ′/2(v) � Cµq ′/4(v).

If ϑ = 2 then, for given 0 < q < 1 in w, we choose q ′ so that q < q ′ < 1. And in
this case

w(�, ϑ)(v)µq ′/2(v) = (1 + |v|2)τ�/2e
q
4 e

q
4 |v|2µq ′/2(v) � Cµ(q

′−q)/4(v).

Choosing 0 < q ′′ < min{|q ′ − q|/4, q ′/4}, we can always write 〈w2(�, ϑ)

∂β [K1g1], g2〉

=
∑
β1�β

∫
R3×R3

w(�, ϑ)(v)|u|γ µq ′′
(u+v)µq ′′

(v)µβ1(u+v, v)∂β1 g1(u+v)g2(v)dudv,

where µβ1(u + v, v) is a collection of smooth functions satisfying∣∣∣∂u
β̄
µβ1(u + v, v)

∣∣∣ � C(|β̄|, q, q ′, q ′′).

Change variables u → u − v back to obtain
∑
β1�β

∫
R3×R3

w(�, ϑ)(v)|u − v|γ µq ′′
(u)µq ′′

(v)µβ1(u, v)∂β1 g1(u)g2(v)dudv.

Now further split

〈w2(�, ϑ)∂β [K1g1], g2〉 = 〈w2(�, ϑ)∂β [K χ
1 g1], g2〉 + 〈w2(�, ϑ)∂β [K 1−χ

1 g1], g2〉
= Kχ

1 + K1−χ
1 .

Using (21) we have

K1−χ
1 ≡

∫
w(�, ϑ)(v)χ̄m(|u − v|)|u − v|γ µq ′′

(u)µq ′′

×(v)µβ1(u, v)∂β1 g1(u)g2(v)dudv,

where χ̄m = 1 − χm and we implicitly sum over β1 � β. Then

∣∣∣K1−χ
1

∣∣∣ � C

{∫
w2(�, ϑ)(v)χ̄m(|u−v|)|u−v|γ µq ′′

(u)µq ′′
(v) |g2(v)|2 dudv

}1/2

×
∑
β1�β

{∫
χ̄m(|u − v|)|u − v|γ µq ′′

(u)µq ′′
(v)
∣∣∂β1 g1(u)

∣∣2 dudv

}1/2

.

� C(2m)
3+γ

2 |g2|ν,�,ϑ
∑
β1�β

(2m)
3+γ

2 |∂β1 g1|ν,�

� η

2
|g2|ν,�,ϑ

∑
β1�β

|∂β1 g1|ν,�.
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The last step follows by choosing m small enough.
Further,

Kχ
1 ≡

∫
w(�, ϑ)(v)χm(|u − v|)|u − v|γ µq ′′

(u)µq ′′

×(v)µβ1(u, v)∂β1 g1(u)g2(v)dudv,

where we again implicitly sum over β1 � β. After an integration by parts

Kχ
1 =

∑
β1�β

(−1)|β1|
∫
w(�, ϑ)(v)∂u

β1

{
χm(|u − v|)|u − v|γ µq ′′

(u)µβ1(u, v)
}

×µq ′′
(v)g1(u)g2(v)dudv.

Since |u − v|γ is bounded now, from (21), choosing another m′ > 0 large enough
we have

∣∣Kχ
1

∣∣ � C(|β|,m)
∫
w(�, ϑ)(v)µq ′′/2(u)µq ′′/2(v) |g1(u)g2(v)| dudv

=
∫

|u|�m′
+
∫

|u|>m′

� C
∫
w(�, ϑ)(v)χ̄m′(|u|)µq ′′/2(u)µq ′′/2(v) |g1(u)g2(v)| dudv

+ Ce− q′′
8 m′

∫
w(�, ϑ)(v)µq ′′/4(u)µq ′′/2(v) |g1(u)g2(v)| dudv

�
{η

2
|g1|ν,� + C(m′)|χ̄m′ g1|ν,�

}
|g2|ν,�,ϑ .

This completes the estimate for 〈w2(�, ϑ)∂β [K1g1], g2〉 and step one.
Step 2: The Estimate for K2.
We turn to K2 from (20). Split K2 = K χ

2 + K 1−χ
2 and consider K χ

2 in (22).

Step (2a): The Estimate of K 1−χ
2 .

Now consider K 1−χ
2 = K2 − K χ

2 which is given by

K 1−χ
2 g1 ≡

∫
R3×S2

B(θ)|u − v|γ µ1/2(u)χ̄m(|u − v|)µ1/2(u′)g1(v
′)dudω

+
∫

R3×S2
B(θ)|u − v|γ µ1/2(u)χ̄m(|u − v|)µ1/2(v′)g1(u

′)dudω.

Here χ̄m = 1 − χm and χm is defined in (21). Equation (3) and {|u − v| � 2m}
imply

|u′| = |v + u − v − [(u − v) · ω]ω| � |v| − 2|u − v| � |v| − 4m,

|v′| = |v + [(u − v) · ω]ω| � |v| − |u − v| � |v| − 2m.

Therefore for any 0 < q ′ < 1 we have

µ1/2(u)µ1/2(u′)+ µ1/2(u)µ1/2(v′) � eC(q ′)m2
µ1/2(u)µq ′/2(v). (27)
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This will be the key point in estimating the K 1−χ
2 part.

First we take a look at ∂β [K 1−χ
2 g1]. Change variables u − v → u to obtain

K 1−χ
2 g1 ≡

∫
R3×S2

B(θ)|u|γ µ1/2(u + v)χ̄m(|u|)µ1/2(v + u⊥)g1(v + u‖)dudω

+
∫

R3×S2
B(θ)|u|γ µ1/2(u + v)χ̄m(|u|)µ1/2(v + u‖)g1(v + u⊥)dudω.

Note that u‖ and u⊥ are defined using notation from [10]:

u‖ ≡ [u · ω]ω, u⊥ ≡ u − [u · ω]ω. (28)

Now derivatives will not hit the singular kernel. ∂β [K 1−χ
2 g1] is

Cβ1
β

∫
R3×S2

B(θ)|u|γ χ̄m(|u|)∂β−β1

×{µ1/2(u + v)µ1/2(v + u⊥)}∂β1 g1(v + u‖)dudω

+Cβ1
β

∫
R3×S2

B(θ)|u|γ χ̄m(|u|)∂β−β1

×{µ1/2(u + v)µ1/2(v + u‖)}∂β1 g1(v + u⊥)dudω,

where we implicitly sum over multi-indicesβ1 � β. Therefore, for any 0 < q ′′ < 1,
|∂β [K 1−χ

2 g1]| is bounded by

C
∫

R3×S2
|u|γ χ̄m(|u|)µq ′′/2(u + v)µq ′′/2(v + u⊥)|∂β1 g1(v + u‖)|dudω

+C
∫

R3×S2
|u|γ χ̄m(|u|)µq ′′/2(u + v)µq ′′/2(v + u‖)|∂β1 g1(v + u⊥)|dudω.

We change variables u → u − v back again to see that |∂β [K 1−χ
2 g1]| is bounded

by

C
∫

R3×S2
|u − v|γ χ̄m(|u − v|)µq ′′/2(u)µq ′′/2(v′)|∂β1 g1(u

′)|dudω

+C
∫

R3×S2
|u − v|γ χ̄m(|u − v|)µq ′′/2(u)µq ′′/2(u′)|∂β1 g1(v

′)|dudω.

Use (27) for any 0 < q ′ < q ′′ to say this is bounded above by

C
∫

R3×S2
|u −v|γ χ̄m(|u −v|)µq ′′/2(u)µq ′/2(v)

{|∂β1 g1(u
′)| + |∂β1 g1(v

′)|} dudω.

We remark that this last bound is true (and trivial) when |β| = 0 in which case
∂β1 = ∂0 = 1 by convention. Thus, |〈w2(�, ϑ)∂β{K 1−χ

2 g1}, g2〉| is

� C
∫

R3×R3×S2
|u − v|γ χ̄m(|u − v|)w2(�, ϑ)(v)µq ′′/2(u)µq ′/2(v)

× |∂β1 g1(v
′)||g2(v)|,

+ C
∫

R3×R3×S2
|u − v|γ χ̄m(|u − v|)w2(�, ϑ)(v)µq ′′/2(u)µq ′/2(v)

× |∂β1 g1(u
′)||g2(v)|.
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Here again we need to control the large exponentially growing factor w(�, ϑ)(v)
by the strong exponential decay of the Maxwellians.

We will control this growth in these cases. If 0 � ϑ < 2 then q ′ > 0 means

w(�, ϑ)(v)µq ′/2(v) � Cµq ′/4(v).

Alternatively, if ϑ = 2 with 0 < q < 1 then we can choose q ′ and q ′′ such that
q < q ′ < q ′′. Then

w(�, ϑ)(v)µq ′/2(v) � Cw(�, 0)(v)µ(q
′−q)/2(v) � Cµ(q

′−q)/4(v).

In either case, choose q1 = min{q ′′/2, q ′/4, |q ′ − q|/4} > 0. Then we have the
upper bound of

C
∫

|u − v|γ χ̄m(|u − v|)w(�, ϑ)(v)µq1(u)µq1(v)|∂β1 g1(v
′)||g2(v)|dvdudω

+C
∫

|u − v|γ χ̄m(|u − v|)w(�, ϑ)(v)µq1(u)µq1(v)|∂β1 g1(u
′)||g2(v)|dvdudω.

Further note that ∫
|u − v|γ χ̄m(|u − v|)µq1(u)du � Cm3+γ .

Apply Cauchy–Schwartz and the last display to obtain the upper bound

� Cm
3+γ

2

{∫
|u − v|γ χ̄m(|u−v|)µq1(u)µq1(v)|∂β1 g1(v

′)|2dvdudω

}1/2

|g2|ν,�,ϑ

+Cm
3+γ

2

{∫
|u−v|γ χ̄m(|u − v|)µq1(u)µq1(v)|∂β1 g1(u

′)|2dvdudω

}1/2

|g2|ν,�,ϑ .

Now apply the change of variables (u, v) → (u′, v′) using |u − v| = |u′ − v′| and
(4) to see that |〈w2(�, ϑ)∂β{K 1−χ

2 g1}, g2〉| is bounded by

Cm3+γ
{∫

|u − v|γ χ̄m(|u − v|)µq1(u)µq1(v)|∂β1 g1(v)|2dvdu

}1/2

|g2|ν,�,ϑ .

Hence,

|〈w2(�, ϑ)∂β{K 1−χ
2 g1}, g2〉| � Cmγ+3|g2|ν,�,ϑ

∑
|β1|�|β|

|∂β1 g1|ν,�.

For m > 0 small enough, we have completed the estimate of K 1−χ
2 , step (2a).

Step (2b): Estimate of K χ
2 .

For some large but fixed m′ > 0 we define the smooth cutoff function

ϒm′ = ϒm′(v, ξ) = χm′(
√

1 + |v|2 + |v + ξ |2), ϒ̄m′ = 1 −ϒm′(v, ξ),

where χm′ is defined in (21). Now split again K χ
2 = Kϒ

2 + K 1−ϒ
2 , where

Kϒ
2 g1 =

∫
R3
ϒm′(v, ξ)kχ2 (v, ξ)g1(v + ξ)dξ.
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We will estimate this term first. Taking derivatives

∂β [Kϒ
2 g1] =

∑
β1�β

Cβ1
β

∫
R3
∂vβ1

[ϒm′(v, ξ)kχ2 (v, ξ)]∂β−β1 g1(v + ξ)dξ.

Using Lemma 1, with 0 < s1 < s2 < 1, |〈w2(�, ϑ)∂β [Kϒ
2 g1], g2〉| is bounded by

C
∑
β1�β

∫
|v|+|v+ξ |>m′

w2(�, ϑ)(v)|∂β−β1 g1(v + ξ)||g2(v)|
|ξ |(1 + |v| + |v + ξ |)1−γ e− s2

8 |ξ |2− s1
2 |ζ|||2 dξdv.

(29)
By (10) we expand

w(�, ϑ)(v)e− s2
8 |ξ |2− s1

2 |ζ|||2 = (1 + |v|2)τ�/2e
q
4 (1+|v|2)ϑ/2 e− s2

8 |ξ |2− s1
2 |ζ|||2 . (30)

If we can control (30) by w(�, ϑ)(v + ξ) times decay in other directions then we
can estimate (29). To do this, we look for an analog of (4) in the variables (23).

Using (23) we have

|v|2 + |v + ξ − ζ⊥|2 = |v + ξ |2 + |v − ζ⊥|2 = |v + ξ |2 +
(
v · ξ|ξ |

)2

. (31)

Since 0 � ϑ � 2 we have

|v|ϑ �
(

|v + ξ |2 +
(
v · ξ|ξ |

)2
)ϑ/2

� |v + ξ |ϑ +
∣∣∣∣v · ξ|ξ |

∣∣∣∣
ϑ

.

Thus,

e
q
4 (1+|v|2)ϑ/2 � e

q
4 e

q
4 |v|ϑ � e

q
4 e

q
4 |v+ξ |ϑ e

q
4

∣∣∣v· ξ|ξ |
∣∣∣ϑ
. (32)

Further, from (23) notice that

|ζ‖|2 =
((
v · ξ|ξ |

)
+ 1

2
|ξ |
)2

� 1

2

(
v · ξ|ξ |

)2

− 1

4
|ξ |2.

Therefore with 0 < s1 < s2 we have

e− s2
8 |ξ |2− s1

2 |ζ|||2 � e
− s2−s1

8 |ξ |2− s1
4

(
v· ξ|ξ |

)2

.

Combine the above with (32), to obtain

e
q
4 (1+|v|2)ϑ/2 e− s2

8 |ξ |2− s1
2 |ζ|||2 � e

q
4 e

q
4 |v+ξ |ϑ e

q
4

∣∣∣v· ξ|ξ |
∣∣∣ϑ

e− s2
8 |ξ |2− s1

2 |ζ|||2

� Ce
q
4 |v+ξ |ϑ e

q
4

∣∣∣v· ξ|ξ |
∣∣∣ϑ

e
− s2−s1

8 |ξ |2− s1
4

(
v· ξ|ξ |

)2

= Ce
q
4 |v+ξ |ϑ e− s2−s1

8 |ξ |2 e
q
4

∣∣∣v· ξ|ξ |
∣∣∣ϑ− s1

4

(
v· ξ|ξ |

)2

.
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If 0 � ϑ < 2 then

e
q
4

∣∣∣v· ξ|ξ |
∣∣∣ϑ− s1

4

(
v· ξ|ξ |

)2

� Ce
− s1

8

(
v· ξ|ξ |

)2

.

And if ϑ = 2, then 0 < q < 1 and we can choose s1 with 1 > s1 > q so that

e
q
4

∣∣∣v· ξ|ξ |
∣∣∣2− s1

4

(
v· ξ|ξ |

)2

� Ce
− s1−q

4

(
v· ξ|ξ |

)2

.

In either case, choosing s3 = min{|s1 −q|, s1/2} > 0 and plugging these estimates
into (30), we conclude that

w(�, ϑ)(v)e− s2
8 |ξ |2− s1

2 |ζ|||2

� C(1 + |v|2)τ�/2e
q
4 (1+|v+ξ |2)ϑ/2 e

− s2−s1
8 |ξ |2− s3

4

(
v· ξ|ξ |

)2

. (33)

Next, we estimate (1 + |v|2)τ�/2 with τ < 0 and � ∈ R. If �τ > 0 then (31) yields

(1 + |v|2)τ�/2 �
(

1 + |v + ξ |2 +
(
v · ξ|ξ |

)2
)τ�/2

� C(1 + |v + ξ |2)τ�/2
(

1 +
(
v · ξ|ξ |

)2
)τ�/2

.

Conversely if �τ � 0 then we split the region into

{|v + ξ | > 2|v|} ∪ {|v + ξ | � 2|v|}.
On {|v + ξ | � 2|v|} and �τ � 0 then

(1 + |v|2)τ�/2 � C(1 + |v + ξ |2)τ�/2.
Alternatively, if {|v + ξ | > 2|v|} then

|ξ | � |v + ξ | − |v| > |v + ξ |/2.
We therefore have

(1 + |v|2)τ�/2e− s2−s1
8 |ξ |2 � e− s2−s1

8 |ξ |2 � e− s2−s1
16 |ξ |2 e− s2−s1

64 |v+ξ |2 .

In any of these last few cases, since s2 > s1 > q, from (33) we can conclude

w(�, ϑ)(v)e− s2
8 |ξ |2− s1

2 |ζ|||2 � C(1 + |v|2)τ�/2e
q
4 (1+|v+ξ |2)ϑ/2 e

− s2−s1
8 |ξ |2− s3

4

(
v· ξ|ξ |

)2

� C(1 + |v + ξ |2)τ�/2e
q
4 (1+|v+ξ |2)ϑ/2 e

− s2−s1
16 |ξ |2− s3

8

(
v· ξ|ξ |

)2

= Cw(�, ϑ)(v + ξ)e
− s2−s1

16 |ξ |2− s3
8

(
v· ξ|ξ |

)2

.
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Plug this into (29) to obtain the following upper bound for (29) of

C
∫

|v|+|v+ξ |>m′

(
w(�, ϑ)(v + ξ)|∂β−β1 g1(v + ξ)|) (w(�, ϑ)(v)|g2(v)|)

|ξ |(1 + |v| + |v + ξ |)1−γ

×e− s2−s1
16 |ξ |2 dξdv,

where we implicitly sum over β1 � β. Using Cauchy–Schwartz and translation
invariance this is

� C

m′

∫ (
w(�, ϑ)(v + ξ)|∂β−β1 g1(v + ξ)|) (w(�, ϑ)(v)|g2(v)|)

|ξ |(1 + |v| + |v + ξ |)−γ e− s2−s1
16 |ξ |2 dξdv

� C

m′ |g2|ν,�,ϑ
∫
w2(�, ϑ)(v + ξ)|∂β−β1 g1(v + ξ)|2

|ξ |(1 + |v + ξ |)−γ e− s2−s1
16 |ξ |2 dξdv

� C

m′
∑
β1�β

|∂β−β1 g1|ν,�,ϑ |g2|ν,�,ϑ .

This completes the estimate for Kϒ
2 .

We now estimate K 1−ϒ
2 . Taking derivatives

∂β [K 1−ϒ
2 g1] =

∑
β1�β

Cβ1
β

∫
R3
∂vβ1

[ϒ̄m′(v, ξ)kχ2 (v, ξ)]∂β−β1 g1(v + ξ)dξ.

Also,

〈w2∂β [K 1−ϒ
2 g1], g2〉 =

∫
w2(�, ϑ)∂β [K 1−ϒ

2 g1]g2(v)dv.

By Cauchy–Schwartz and the compact support of K 1−ϒ
2 we have

∣∣∣〈w2∂β [K 1−ϒ
2 g1], g2〉

∣∣∣ � C(m′)
{∫

|v|�m′

(
∂β [K 1−ϒ

2 g1]
)2

dv

}1/2

|g2|ν,�.

With Lemma 1 we established that ∂β [K 1−ϒ
2 g1] is compact from Hk to Hk . Then

by the general interpolation for compact operators from Hk to Hk we have

∣∣∣〈w2∂β [K 1−ϒ
2 g1], g2〉

∣∣∣ �
⎧⎨
⎩
η

4

∑
|β1|=|β|

∣∣∂β1 g1
∣∣
ν,�

+ C(η,m′) |g1|ν,�
⎫⎬
⎭ |g2|ν,�.

This completes the estimate for K 1−ϒ
2 and thus for K χ

2 , step (2b). We have therefore
finished the whole proof. ��

The following Corollary is used to prove existence of global solutions.

Corollary 1. Let |β| > 0, � ∈ R, 0 � ϑ � 2 and 0 < q. If ϑ = 2 restrict
0 < q < 1. Then for all η > 0 there exists C(η) > 0 such that

〈w2∂β [Lg], ∂βg〉 �
∣∣∂βg

∣∣2
ν,�,ϑ

− η
∑

|β1|�|β|

∣∣∂β1 g
∣∣2
ν,�,ϑ

− C(η)
∣∣χ̄C(η)g

∣∣2
�
,

where χ̄C(η) is from (21).
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The rest of this section is devoted to estimates for the nonlinear collision term
	[g1,g2],with gi (x, v) (i = 1, 2). In (5), the (nonsymmetric) bilinear form	[g1,g2]
in the Boltzmann case is

	[g1,g2] = µ−1/2(v)Q[µ1/2g1, µ
1/2g2] ≡ 	gain[g1,g2] − 	loss[g1,g2],

=
∫

R3
|u − v|γ µ1/2(u)

[∫
S2

B(θ)g1(u
′)g2(v

′)dω
]

du, (34)

−g2(v)

∫
R3

|u − v|γ µ1/2(u)

[∫
S2

B(θ)dω

]
g1(u)du.

The change of variables u − v → u gives

∂αβ 	[g1,g2] ≡ ∂αβ

[∫
R3

∫
S2

|u|γ µ1/2(u + v)g1(v + u‖)g2(v + u⊥)B(θ)dudω

]
,

−∂αβ
[∫

R3

∫
S2

|u|γ µ1/2(u + v)g1(v + u)g2(v)B(θ)dudω

]
,

≡
∑

Cβ0β1β2
β Cα1α2

α 	0[∂α1
β1

g1,∂
α2
β2

g2],
where the summation is over β0 + β1 + β2 = β and α1 + α2 = α. Also u⊥, u‖ are
given by (28). By the product rule and the reverse change of variables we have

	0[∂α1
β1

g1,∂
α2
β2

g2], ≡
∫

R3

∫
S2

|u − v|γ ∂β0 [µ1/2(u)]∂α1
β1

g1(u
′)∂α2

β2
g2(v

′)B(θ)

−∂α2
β2

g2(v)

∫
R3

∫
S2

|u − v|γ ∂β0 [µ1/2(u)]∂α1
β1

g1(u)B(θ)

≡ 	0
gain − 	0

loss. (35)

With these formulas, we have the following nonlinear estimate:

Lemma 3. Recall (35) and let β0 + β1 + β2 = β, α1 + α2 = α. Say 0 � ϑ � 2,
0 < q . Ifϑ = 2, restrict 0 < q < 1. Let � = |β|−l with l � 0. If |α1|+|β1| � N/2,
then

|(w2(�, ϑ)	0[∂α1
β1

g1,∂
α2
β2

g2], ∂αβ g3)| � CE1/2
l,ϑ (g1)||∂α2

β2
g2||ν,|β2|−l,ϑ ||∂αβ g3||ν,�,ϑ .

Alternatively, if |α2| + |β2| � N/2, then

|(w2(�, ϑ)	0[∂α1
β1

g1,∂
α2
β2

g2], ∂αβ g3)| � C ||∂α1
β1

g1||ν,|β1|−l,ϑE1/2
l,ϑ (g2)||∂αβ g3||ν,�,ϑ .

The proof of Lemma 3 is more or less the same as in [10]. However, small mod-
ifications are needed to facilitate the exponentially growing weight. In (39) we need
to use (4) to properly distribute the exponentially growing factor in w2(�, ϑ)(v).

Proof.
Case 1: The Loss Term Estimate
First consider the second term 	0

lossin ( 35). Note that

|∂β0 [µ1/2(u)]| � Ce−|u|2/8.
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With |α1| + |β1| � N/2 and γ > −3 we have∫
R3

|u − v|γ |∂β0 [µ1/2(u)]∂α1
β1

g1(x, u)|du

� C

{∫
R3

|u − v|γ e−|u|2/8|∂α1
β1

g1(x, u)|2du

}1/2 {∫
R3

|u − v|γ e−|u|2/8du

}1/2

� C sup
x,u

∣∣∣e−|u|2/16∂
α1
β1

g1(x, u)
∣∣∣
{∫

R3
|u − v|γ e−|u|2/16du

}

� CE1/2
l (g1)[1 + |v|]γ .

Since N � 8, we have used the embedding H4(T3 × R
3) ⊂ L∞ to argue that

sup
x,u

∣∣∣e−|u|2/16∂
α1
β1

g1(x, u)
∣∣∣ � CE1/2

l (g1), (36)

where E1/2
l (g1) is defined in (13). Hence

∣∣∣(w2(�, ϑ)	0
loss[∂α1

β1
g1,∂

α2
β2

g2], ∂αβ g3)

∣∣∣ is

bounded by

CE1/2
l (g1)

∫
[1 + |v|]γ w2(�, ϑ)(v)|∂α2

β2
g2(v)∂

α
β g3(v)|dvdx

� CE1/2
l (g1)||∂α2

β2
g2||ν,�,ϑ ||∂αβ g3||ν,�,ϑ .

This completes the estimate for 	0
loss when |α1| + |β1| � N/2.

Now consider 	0
loss with |α2|+ |β2| � N/2. Here the (u, v) integration domain

is split into three parts

{|v − u| � |v|/2} ∪ {|v − u| � |v|/2, |v| � 1} ∪ {|v − u| � |v|/2, |v| � 1}.
In the first region, |u| is comparable to |v| and thus we can use exponential decay
in both variables to get the estimate. In the second and third regions, |u| is not com-
parable to |v| but we exploit the largeness or smallness of |v| to get the estimate.

Case (1a): The Loss Term in the First Region {|v − u| � |v|/2}.
For the first part, {|v − u| � |v|/2}, we have

|u| � |v| − |v − u| � |v|/2.
So that

e−|u|2/8 � e−|u|2/16e−|v|2/64.

Then the integral of w2	0
loss[∂α1

β1
g1,∂

α2
β2

g2]∂αβ g3 over {|u − v| � |v|/2} is bounded
by

C
∫

|u − v|γ e−|u|2/16e−|v|2/64w2(�, ϑ)(v)|∂α1
β1

g1(u)∂
α2
β2

g2(v)∂
α
β g3(v)|dudvdx

� C

{∫
|u − v|γ e−|u|2/16e−|v|2/64|∂α1

β1
g1(u)|2dudvdx

}1/2

×
{∫

|u − v|γ e−|u|2/16e−|v|2/64w4(�, ϑ)(v)|∂α2
β2

g2(v)|2|∂αβ g3(v)|2dudvdx

}1/2

.
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Integrating over dv, the first factor is bounded by C ||∂α1
β1

g1||ν,�. Integrating first
over u variables in the second factor yields an upper bound

C

{∫ (∫
|u − v|γ e−|u|2/16du

)
e−|v|2/64w4|∂α2

β2
g2|2|∂αβ g3|2dvdx

}1/2

� C

{∫ ∫
e−|v|2/64w4(�, ϑ)(v)[1 + |v|]γ |∂α2

β2
g2|2|∂αβ g3|2dvdx

}1/2

.

And as in (36), since N � 8 and |α2| + |β2| � N/2, by (13), we have

sup
x,v
w(�, ϑ)(v)e−|v|2/256|∂α2

β2
g2(x, v)| � CE1/2

l,ϑ (g2). (37)

We thus conclude the estimate over the first region.
Case (1b): The Loss Term in the Second Region {|v − u| � |v|/2, |v| � 1}.
Next consider 	0

loss over the second region {|v − u| � |v|/2, |v| � 1}. Since
γ < 0, we have

|u − v|γ � C[1 + |v|]γ .
Then the integral of w2(�, ϑ)	0

loss[∂α1
β1

g1,∂
α2
β2

g2]∂αβ g3 over this region is bounded
by

C
∫

[1 + |v|]γ e−|u|2/8w2(�, ϑ)|∂α1
β1

g1(u)∂
α2
β2

g2(v)∂
α
β g3(v)|dudvdx

� C
∫ {∫

e−|u|2/8|∂α1
β1

g1(u)|du

}

×
{∫

[1 + |v|]γ w2(�, ϑ)|∂α2
β2

g2(v)∂
α
β g3(v)|dv

}
dx

� C
∫

|∂α1
β1

g1|ν,�
{∫

w2|∂α2
β2

g2|2dv

}1/2 {∫
[1 + |v|]2γ w2|∂αβ g3|2dv

}1/2

dx .

Since |α2| + |β2| � N/2, N � 8 and H2(T3) ⊂ L∞(T3), we have

sup
x

∫
w2(�, ϑ)(v)|∂α2

β2
g2(x, v)|2dv � CEl,ϑ (g2). (38)

Thus, by the Cauchy–Schwartz inequality, the	0
loss term over {|v−u| � |v|/2, |v| �

1} is bounded by C ||∂α1
β1

g1||ν,�E1/2
l,ϑ (g2)||∂αβ g3||ν,�,ϑ .

Case (1c): The Loss Term in the Third Region {|v − u| � |v|/2, |v| � 1}.
For the last region, {|v − u| � |v|/2, |v| � 1}, we have

|u − v|γ � C |v|γ , w(�, ϑ)(v) � C.
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Then the integral of w2(�, ϑ)	0
loss[∂α1

β1
g1,∂

α2
β2

g2]∂αβ g3 over this region is bounded
by

C
∫

{|v−u|�|v|/2, |v|�1}
|u − v|γ e−|u|2/8|∂α1

β1
g1(u)∂

α2
β2

g2(v)∂
α
β g3(v)|dudvdx

� C
∫ {∫

|u − v|γ /2e−|u|2/8|∂α1
β1

g1(u)|du

}

×
{∫

|v|�1
|v|γ /2|∂α2

β2
g2(v)∂

α
β g3(v)|dv

}
dx .

Using the Cauchy–Schwartz inequality a few times we have

� C
∫ {∫

|u − v|γ e−|u|2/8du

}1/2 {∫
e−|u|2/8|∂α1

β1
g1(u)|2du

}1/2

×
{∫

|v|�1
|v|γ |∂α2

β2
g2|2dv

}1/2 {∫
|v|�1

|∂αβ g3|2dv

}1/2

dx

� C
∫

|∂α1
β1

g1|ν,�
{∫

|v|�1
|v|γ |∂α2

β2
g2|2dv

}1/2 {∫
|v|�1

|∂αβ g3|2dv

}1/2

dx .

By |α2| + |β2| � N/2, γ > −3 and H4(T3 × R
3) ⊂ L∞,

∫
|v|�1

|v|γ |∂α2
β2

g2|2dv � C sup
|v|�1,x∈T3

|∂α2
β2

g2|2 � CEl(g2).

Hence, by Cauchy–Schwartz, the last part is bounded by

C ||∂α1
β1

g1||ν,�E1/2
l (g2)||∂αβ g3||ν,�.

This concludes the desired estimate for 	0
loss.

Case 2: The Gain Term Estimate.
The next step is to estimate the gain term 	0

gain in ( 35), for which the (u, v)
integration domain is split into two parts

{|u| � |v|/2} ∪ {|u| � |v|/2}.

Case (2a) The Gain Term over {|u| � |v|/2}.
For the first region {|u| � |v|/2},

e−|u|2/8 � e−|u|2/16e−|v|2/64.
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Then the integral of w2(�, ϑ)	0
gain[∂α1

β1
g1, ∂

α2
β2

g2]∂α3
β3

g3 over {|u| � |v|/2} is thus
bounded by∫

|u|�|v|/2
|u − v|γ e−|u|2/16e−|v|2/64w2(�, ϑ)(v)|∂α1

β1
g1(u

′)∂α2
β2

×g2(v
′)∂αβ g3(v)|dωdudvdx

� C

{∫
|u − v|γ e−|u|2/16e−|v|2/64w2|∂α1

β1
g1(u

′)|2|∂α2
β2

g2(v
′)|2dωdudvdx

}1/2

×
{∫

|u − v|γ e−|u|2/16e−|v|2/64w2|∂αβ g3(v)|2dudvdx

}1/2

� C

{∫
|u′ − v′|γ e− 1

64 (|u′|2+|v′|2)w2(v)|∂α1
β1

g1(u
′)|2|∂α2

β2
g2(v

′)|2
}1/2

×||∂αβ g3||ν,�,ϑ .
In the first factor we have used (4) and |u′ − v′| = |u − v|. By (4),

e
q
4 (1+|v|2)ϑ/2 � e

q
4 (1+|v′|2+|u′|2)ϑ/2 � e

q
4 (1+|v′|2)ϑ/2 e

q
4 (1+|u′|2)ϑ/2 . (39)

Using this, (10) and (4) we have

e− 1
64 (|u′|2+|v′|2)w2(�, ϑ)(v) � e− 1

128 (|u′|2+|v′|2)w2(�, ϑ)(v′)w2(�, ϑ)(u′).

So that the factor in braces is

� C
∫

|u′−v′|γ e− 1
128 (|u′|2+|v′|2)w2(u′)|∂α1

β1
g1(u

′)|2w2(v′)|∂α2
β2

g2(v
′)|2dωdudvdx .

The change of variables (u, v) → (u′, v′) implies

= C

{∫
|u − v|γ e− 1

128 (|u|2+|v|2)w2(u)|∂α1
β1

g1(u)|2w2(v)|∂α2
β2

g2(v)|2dudvdx

}1/2

.

Assume |α1| + |β1| � N/2. As in (37),

sup
x,u

{
w(�, ϑ)(u)e− 1

256 |u|2 |∂α1
β1

g1(x, u)|
}

� CE1/2
l,ϑ (g1).

Integrate first over du to obtain∫
|u − v|γ e− 1

128 |u|2w(�, ϑ)(u)|∂α1
β1

g1(u)|2du � CE1/2
l,ϑ (g1)

∫
|u − v|γ e− 1

256 |u|2 du

� CE1/2
l,ϑ (g1)[1 + |v|]γ .

If |α2| + |β2| � N/2 use this last argument but switch ∂α1
β1

g1 with ∂α2
β2

g2.

Then the bound for the gain term over {|u| � |v|/2}, if |α1| + |β1| � N/2, is
∫

|u|�|v|/2
� CE1/2

l,ϑ (g1)||∂α2
β2

g2||ν,�,ϑ ||∂αβ g3||ν,�,ϑ .



Robert M. Strain & Yan Guo

And the bound for the gain term over {|u| � |v|/2}, if |α2| + |β2| � N/2, is
∫

|u|�|v|/2
� C ||∂α2

β2
g1||ν,�,ϑE1/2

l,ϑ (g2)||∂αβ g3||ν,�,ϑ .

This completes the estimate for the gain term over {|u| � |v|/2}.

Case (2b): The Gain Term over {|u| � |v|/2, |v| � 1}.
Now consider {|u| � |v|/2}. Since |v−u| < |v|/2 implies |u| � |v|−|v−u| >

|v|/2, we obtain

{|u| � |v|/2} = {|u| � |v|/2} ∩ {|v − u| � |v|/2}.
Since |v| � 1, then |u| � 1/2 and the gain term is bounded by
∫

|v|�1,|u|�|v|/2
|u − v|γ e−|u|2/8w2|∂α1

β1
g1(u

′)∂α2
β2

g2(v
′)∂αβ g3(v)|dωdudvdx

� C
∫

|v|�1

{
|v|γ /2

∫
|u|�1/2

|u − v|γ /2e−|u|2/8|∂α1
β1

g1(u
′)∂α2

β2
g2(v

′)|dωdu

}

×|∂αβ g3(v)|dvdx

× � C
∫

|v|�1

{
|v|γ

∫
|u|�1/2

|∂α1
β1

g1(u
′)|2|∂α2

β2
g2(v

′)|2dωdu

}1/2

×
{∫

|u|�1/2
|u − v|γ e−|u|2/4du

}1/2

|∂αβ g3(v)|dvdx

� C
∫

|v|�1

{
|v|γ

∫
|u|�1/2

|∂α1
β1

g1(u
′)|2|∂α2

β2
g2(v

′)|2dωdu

}1/2

|∂αβ g3(v)|dvdx

� C

{∫
|v|�1,|u|�1/2

|v|γ |∂α1
β1

g1(u
′)|2|∂α2

β2
g2(v

′)|2dωdudvdx

}1/2

‖∂αβ g3‖ν,�.

(40)

We now estimate the first factor. Since |u| � |v|/2, from (3) we have

|u′| + |v′| � 2[|u| + |v|] � 3|v|.
Since γ < 0, this implies

|v|γ � 3−γ |u′|γ , |v|γ � 3−γ |v′|γ .
Thus, ∫

|v|�1,|u|�1/2
|v|γ |∂α1

β1
g1(u

′)|2|∂α2
β2

g2(v
′)|2dωdudv

� C
∫

|v′|�3,|u′|�3
min[|v′|γ , |u′|γ ]|∂α1

β1
g1(u

′)|2|∂α2
β2

g2(v
′)|2dωdudvdx .
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Now change variables (v, u) → (v′, u′) so that the above is

C
∫

|v|�3,|u|�3
min[|v|γ , |u|γ ]|∂α1

β1
g1(u)|2|∂α2

β2
g2(v)|2dωdudvdx .

Assume |α1| + |β1| � N/2 and majorize the above by

C
∫ {∫

|u|�3
|u|γ |∂α1

β1
g1(u)|2du

}{∫
|v|�3

|∂α2
β2

g2(v)|2dv

}
dx

� C sup
x,|u|�3

|∂α1
β1

g1(u)|2‖∂α2
β2

g2‖2
ν,� � CEl(g1)‖∂α2

β2
g2‖2

ν,�.

Alternatively, if |α2| + |β2| � N/2 then

C
∫ {∫

|u|�3
|∂α1
β1

g1(u)|2du

}{∫
|v|�3

|v|γ |∂α2
β2

g2(v)|2dv

}
dx

� C‖∂α1
β1

g1‖2
ν,� sup

x,|v|�3
|∂α2
β2

g2(v)|2 � C‖∂α1
β1

g1‖2
ν,�El(g2).

Combine this upper bound with (40) to complete the estimate for the gain term over
{|u| � |v|/2, |v| � 1}.

Case (2c): The Gain Term over {|u| � |v|/2, |v − u| � |v|/2, |v| � 1}.
The last case is the gain term over the region {|u| � |v|/2, |v−u| � |v|/2, |v| �

1}. The integral ofw2(�, ϑ)	0
gain[∂α1

β1
g1, ∂

α2
β2

g2]∂αβ g3 over such a region is bounded
by
∫

|u|�|v|/2,|v|�1
|u − v|γ e−|u|2/4w2(�, ϑ)|∂α1

β1
g1(u

′)∂α2
β2

g2(v
′)∂αβ g3(v)|dωdudvdx

� C
∫

|u|�|v|/2,|v|�1
[1 + |v|]γ e−|u|2/4w2(�, ϑ)|∂α1

β1
g1(u

′)∂α2
β2

g2(v
′)

×∂αβ g3(v)|dωdudvdx

� C

{∫
[1 + |v|]γ e−|u|2/4w2(�, ϑ)|∂α1

β1
g1(u

′)|2|∂α2
β2

g2(v
′)|2dωdudvdx

}1/2

×
{∫

[1 + |v|]γ e−|u|2/4w2(�, ϑ)|∂αβ g3(v)|2dωdudvdx

}1/2

(41)

� C

{∫
[1 + |v|]γ w2(�, ϑ)(v)|∂α1

β1
g1(u

′)|2|∂α2
β2

g2(v
′)|2dωdudvdx

}1/2

×||∂αβ g3||ν,�,ϑ .

We have used |v − u|γ � 4−γ [1 + |v|]γ in the first inequality. If �τ < 0, use
|v| � 2|u| and (4) to establish

(1 + |v|2)�τ/2 � C(1 + |v′|2 + |u′|2)�τ/2.
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Conversely, if �τ � 0, just use (4) to establish the same inequality. Recall (39) and
M(v) = exp

( q
4 (1 + |v|2)ϑ/2). Thus,

w2(�, ϑ)(v) � C(1 + |v′|2 + |u′|2)�τ M(v′)M(u′).

Then, since � = |β| − l and τ � 0, l � 0, we have

w2(�, ϑ)(v) � C(1 + |v′|2 + |u′|2)−lτ (1 + |v′|2 + |u′|2)|β|τ M(v′)M(u′)

� C(1 + |v′|2)−lτ (1 + |u′|2)−lτ (1 + |v′|2 + |u′|2)|β|τ M(v′)M(u′).

Assume |α2|+|β2| � N/2. Using this estimate and the change of variable (v, u) →
(v′, u′) we obtain

∫
[1 + |v|]γ w2(�, ϑ)(v)|∂α1

β1
g1(u

′)|2|∂α2
β2

g2(v
′)|2dωdudvdx

� C
∫

[1 + |u′|]γ w2(|β1| − l, ϑ)(u′)|∂α1
β1

g1(u
′)|2w2(|β2| − l, ϑ)(v′)|∂α2

β2
g2(v

′)|2

= C
∫

[1 + |u|]γ w2(|β1| − l, ϑ)(u)|∂α1
β1

g1(u)|2w2(|β2| − l, ϑ)(v)

×|∂α2
β2

g2(v)|2dudvdx

= C
∫ {∫

w2(|β2| − l, ϑ)(v)|∂α2
β2

g2(v)|2dv

}

×
{∫

[1 + |u|]γ w2(|β1| − l, ϑ)(u)|∂α1
β1

g1(u)|2du

}
dx .

Using the embedding in (38), we see that this is bounded by

CEl,ϑ (g2)

∫
[1 + |u|]γ w2(|β1| − l, ϑ)(u)|∂α1

β1
g1(u)|2dudx

� CEl,ϑ (g2)||∂α1
β1

g1||2ν,|β1|−l,ϑ .

Similarly if |α1| + |β1| � N/2 then this is bounded by

C ||∂α2
β2

g2||2ν,|β2|−l,ϑEl,ϑ (g1).

Combine this with (41) to complete the nonlinear estimate. ��

This completes the estimates for the Boltzmann case. In Section 4 we use these
to establish global existence. Then in Section 5 we prove the decay. In the next
section we establish the analogous estimates for the Landau case.
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3. Landau Estimates

In this section, we will prove the basic estimates used to obtain global existence
of solutions with an exponential weight in the Landau case. In this case, the deriva-
tives in the Landau operator cause extra difficulties in particular because ∂iw(�, ϑ)

can grow faster in v than w(�, ϑ). This new feature of the exponential weight (10)
forces us to weaken the linear estimate with high order velocity derivatives (Lemma
8) from the analogous estimate [9, Lemma 6, p.403]. A new linear estimate with no
extra derivatives (Lemma 9) is also necessary because of the exponential weight.
It turns out that we need to dig up exact cancellation in order to prove this estimate
in the ϑ = 2 case.

For any vector-valued function g(v) = (g1, g2, g3), we define the projection to
the vector v as

Pvgi ≡ vi

|v|
3∑

j=1

v j

|v|g j . (42)

Furthermore, in this section we will use the Einstein summation convention over i
and j , for example repeated indices are always summed

σ i (v) = σ i j (v)
v j

2
=

3∑
j=1

σ i j (v)
v j

2
. (43)

With this notation we have

Lemma 4. [4, 9]σ i j (v), σ i (v) are smooth functions such that

|∂βσ i j (v)| + |∂βσ i (v)| � Cβ [1 + |v|]γ+2−|β|

and furthermore

σ i j (v) = λ1(v)
viv j

|v|2 + λ2(v)

(
δi j − viv j

|v|2
)
. (44)

Thus

σ i j (v)gi g j = λ1(v)

3∑
i=1

{Pvgi }2 + λ2(v)

3∑
i=1

{[I − Pv]gi }2. (45)

Moreover, there are constants c1 and c2 > 0 such that as |v| → ∞
λ1(v) ∼ c1[1 + |v|]γ , λ2(v) ∼ c2[1 + |v|]γ+2.

The estimate of σ i j and σ i with high derivatives was already established in [4].
The computation of the eigenvalues and their convergence rate was already shown
in [9]. We prove the representation (44) below because we will use it in important
places in later proofs and it is not formally written down in the other papers.
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Proof. Recall from (9) that

σ i j (v) = (2π)−3/2
∫

R3

(
δi j − (vi − ui )(v j − u j )

|v − u|2
)

|v − u|γ+2e−|u|2/2du.

Changing variables u → v − u we have

σ i j (v) = (2π)−3/2
∫

R3

(
δi j − ui u j

|u|2
)

|u|γ+2e−|v−u|2/2du.

Given v ∈ R
3 define v1 = v/|v| and complete an orthonormal basis {v1, v2, v3}

where vi · v j = δi j . Then define the corresponding orthogonal 3 × 3 matrix as

O = [v1 v2 v3].
Applying this orthogonal transformation to the integral in σ i j above we obtain

σ i j (v) = (2π)−3/2
∫

R3

(
δi j − (Ou)i (Ou) j

|u|2
)

|u|γ+2e−|v−Ou|2/2du.

Here we have used |Ou| = |u|. Also

(Ou)i = u1v
1
i + u2v

2
i + u3v

3
i

and

|v − Ou|2 = |v − u1v
1 − u2v

2 − u3v
3|2 = (|v| − u1)

2 + u2
2 + u2

3. (46)

By symmetry, we have

σ i j (v) = (2π)−3/2
∫

R3

⎛
⎝δi j −

3∑
l,m=1

ulum

|u|2 v
l
iv

m
j

⎞
⎠ |u|γ+2e− 1

2 [(|v|−u1)
2+u2

2+u2
3]du

= (2π)−3/2
∫

R3

(
δi j −

3∑
m=1

u2
m

|u|2 v
m
i v

m
j

)
|u|γ+2e− 1

2 [(|v|−u1)
2+u2

2+u2
3]du.

Write (m = 1, 2, 3)

B0(v) ≡ (2π)−3/2
∫

R3
|u|γ+2e− 1

2 [(|v|−u1)
2+u2

2+u2
3]du,

Bm(v) ≡ (2π)−3/2
∫

R3

u2
m

|u|2 |u|γ+2e− 1
2 [(|v|−u1)

2+u2
2+u2

3]du.

Then by symmetry

B2(v) = B3(v) = (2π)−3/2
∫

R3

u2
2 + u2

3

2|u|2 |u|γ+2e− 1
2 [(|v|−u1)

2+u2
2+u2

3]du

and we have

σ i j (v) = B0(v)δi j − B1(v)v
1
jv

1
j − B2(v)(v

2
i v

2
j + v3

i v
3
j ).
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Define the orthogonal projections Pj = v j ⊗ v j . Then we have the resolution of
the identity I = P1 + P2 + P3. In component form this is

v2
i v

2
j + v3

i v
3
j = δi j − viv j

|v|2 .
Then we have

σ i j (v) = {B0(v)− B1(v)}viv j

|v|2 + {B0(v)− B2(v)}
(
δi j − viv j

|v|2
)
.

Now the eigenvalues are λ1(v) = B0(v)− B1(v) and λ2(v) = B0(v)− B2(v) or

λ1(v) = (2π)−3/2
∫

R3
|u|γ+2

(
1 − u2

1

|u|2
)

e− 1
2 [(|v|−u1)

2+u2
2+u2

3]du

and

λ2(v) = (2π)−3/2
∫

R3
|u|γ+2

(
1 − u2

2 + u2
3

2|u|2
)

e− 1
2 [(|v|−u1)

2+u2
2+u2

3]du.

This completes the derivation of the spectral representation for σ i j (v). ��
Next, we write bounds for the σ norm.

Lemma 5. [9, Corollary 1, p.399] There exists c > 0 such that

c|g|2σ ,�,ϑ �
∣∣∣[1 + |v|] γ2 {Pv∂i g}

∣∣∣2
�,ϑ

+
∣∣∣[1 + |v|] γ+2

2 {[I − Pv]∂i g}
∣∣∣2
�,ϑ

+
∣∣∣[1 + |v|] γ+2

2 g
∣∣∣2
�,ϑ
.

Furthermore,

1

c
|g|2σ ,�,ϑ �

∣∣∣[1 + |v|] γ2 {Pv∂i g}
∣∣∣2
�,ϑ

+
∣∣∣[1 + |v|] γ+2

2 {[I − Pv]∂i g}
∣∣∣2
�,ϑ

+
∣∣∣[1 + |v|] γ+2

2 g
∣∣∣2
�,ϑ
.

The upper bound was not written down in [9], but the proof is the same. We write
it down here because we will use it in the nonlinear estimate. Next, the operators
A, K and 	 from (5) and (8) in the Landau case are defined.

Lemma 6. [9, Lemma 1] We have the following representations for A, K and 	.

Ag2 = ∂i [σ i j∂ j g2] − σ i j vi

2

v j

2
g2 + ∂iσ

i g2 (47)

K g1 = −µ−1/2∂i

{
µ
[
φi j ∗

{
µ1/2

[
∂ j g1 + v j

2
g1

]}]}
(48)

= −µ−1/2∂i

{
µ

∫
R3
φi j (v − v′)µ1/2(v′)

[
∂ j g1(v

′)+ v′
j

2
g1(v

′)
]

dv′
}
,

	[g1, g2] = ∂i [{φi j ∗ [µ1/2g1]}∂ j g2] −
{
φi j ∗

[vi

2
µ1/2g1

]}
∂ j g2

−∂i [{φi j ∗ [µ1/2∂ j g1]}g2] +
{
φi j ∗

[vi

2
µ1/2∂ j g1

]}
g2. (49)



Robert M. Strain & Yan Guo

These representations are different in a few places by a factor of 1
2 from those

in [9]. The only reason for this difference is our use of a different normalization for
the Maxwellian in this paper.

Proof. We only reprove A. First notice that for either fixed i or j

∑
i

φi j (v)vi =
∑

j

φi j (v)v j = 0. (50)

We now take the derivatives inside Ag2

Ag2 = µ−1/2 Q(µ,µ1/2g2)

= µ−1/2∂i

{
σ i jµ1/2

[
∂ j g2 − v j

2
g2

]}
+ µ−1/2∂i {{φi j ∗ [v jµ]}µ1/2g2}

= µ−1/2∂i

{
σ i jµ1/2

[
∂ j g2 − v j

2
g2

]}

+µ−1/2∂i {[φi j ∗ µ]v jµ
1/2g2} by (50)

= µ−1/2∂i

{
σ i jµ1/2

[
∂ j g2 + v j

2
g2

]}

= µ−1/2∂i {σ i jµ1/2∂ j g2} + µ−1/2∂i

{
σ i jµ1/2 v j

2
g2

}

= ∂i [σ i j∂ j g2] + µ−1/2∂i [µ1/2]σ i j∂ j g2 + ∂i

{
σ i j v j

2
g2

}

+µ−1/2∂i [µ1/2]σ i j v j

2
g2

= ∂i [σ i j∂ j g2] − σ i j vi

2

v j

2
g2 + µ−1/2∂i [µ1/2]σ i j∂ j g2 + ∂i

{
σ i j v j

2
g2

}

= ∂i [σ i j∂ j g2] − σ i j vi

2

v j

2
g2 + ∂i

{
σ i j v j

2

}
g2,

from (9), where ∂i [µ1/2] = vi
2 µ

1/2. ��
In the rest of this section, we will prove estimates for A, K and 	.

Lemma 7. Let 0 � ϑ � 2, � ∈ R and 0 < q. If ϑ = 2 restrict 0 < q < 1. Then
for any η > 0, there is 0 < C = C(η) < ∞ such that

|〈w2∂iσ
i g1, g2〉| + |〈w2 K g1, g2〉| � η |g1|σ ,�,ϑ |g2|σ ,�,ϑ + C |g1χ̄C |�|g2χ̄C |�,

(51)

where w2 = w2(�, ϑ) and χ̄C(η) is defined in (21).

The estimate for the ∂iσ
i term is exactly the same as in [9]. But, as in the Boltz-

mann case, the estimate for K needs modification. So we need to show that K can
control one exponentially growing factorw(�, ϑ)(v). We remark that, although it is
not used in this paper, the proof clearly shows |〈w2 K g1, g2〉| � η |g1|σ ,� |g2|σ ,�,ϑ+
C |g1χ̄C |�|g2χ̄C |�.
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Proof. For m > 0, we split∫
w2∂iσ

i g1g2 =
∫

{|v|�m}
+
∫

{|v|�m}
.

By Lemma 4, |∂iσ
i | � C[1 + |v|]γ+1. Thus, the integral over {|v| � m} is �

C(m)|g1χ̄m |�|g2χ̄m |�. From Lemma 5 and the Cauchy–Schwartz inequality∫
{|v|�m}

w2|∂iσ
i g1g2|dv � C

m

∫
w2[1 + |v|]γ+2|g1g2| � C

m
|g1|σ ,�,ϑ |g2|σ ,�,ϑ .

(52)
This completes (51) for the ∂iσ

i term.
Recalling the linear operator K in (48), we have

w2 K g1 = −∂i

{
w2µ1/2

[
φi j ∗

{
µ1/2∂ j g1 + v j

2
µ1/2g1

}]}

+∂i (w
2)µ1/2

[
φi j∗

{
µ1/2∂ j g1 + v j

2
µ1/2g1

}]
(53)

+w2 vi

2
µ1/2

[
φi j ∗

{
µ1/2∂ j g1 + v j

2
µ1/2g1

}]
.

The derivative of the weight function is

∂i (w
2(�, ϑ)) = w2(�, ϑ)w1(v)vi , (54)

where

w1(v) =
{

2�τ(1 + |v|2)−1 + q
ϑ

2
(1 + |v|2) ϑ2 −1

}
. (55)

After integrating by parts for the first term and collecting terms, we can rewrite
〈w2 K g1, g2〉 as

∑
|β1|,|β2|�1

∫
w2(v)φi j (v−v′)µ1/2(v)µ1/2(v′)µ̄β1β2(v, v

′)∂β1 g1(v
′)∂β2 g2(v)dv

′dv,

where µ̄β1β2(v, v
′) is a collection of smooth functions satisfying

|∇vµ̄β1β2(v, v
′)|+|∇v′µ̄β1β2(v, v

′)|+|µ̄β1β2(v, v
′)| � C(1+|v′|2)1/2(1+|v|2)1/2.

Since either 0 � ϑ < 2 or ϑ = 2 and 0 < q < 1, there exists 0 < q ′ < 1 such that

w(�, ϑ)(v)µ1/2(v) � Cµq ′/2(v). (56)

In fact, if 0 � ϑ < 2 choose any 0 < q ′ < 1 and if ϑ = 2 choose 0 < q ′ < 1 − q.
Therefore, we can rewrite 〈w2 K g1, g2〉 as

∑
|β1|,|β2|�1

∫
w(v)φi j (v−v′)µq ′/4(v)µ1/4(v′)µβ1β2(v, v

′)∂β1 g1(v
′)∂β2 g2(v)dv

′dv,

where µβ1β2(v, v
′) is a different collection of smooth functions satisfying

|∇vµβ1β2(v, v
′)| + |∇v′µβ1β2(v, v

′)| + |µβ1β2(v, v
′)| � Ce− q′

16 |v|2 e− 1
16 |v′|2 .
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We have removed an exponentially growing factor w(�, ϑ)(v).
Since φi j (v) = O(|v|γ+2) ∈ L2

loc(R
3) and γ � −3, Fubini’s Theorem implies

φi j (v − v′)µq ′/4(v)µ1/4(v′) ∈ L2(R3 × R
3).

Therefore, for any given m > 0,we can choose a C∞
c function ψ i j (v, v′) such that

||φi j (v − v′)µq ′/4(v)µ1/4(v′)− ψ i j (v, v′)||L2(R3×R3) � 1

m
,

supp{ψ i j } ⊂ {|v′| + |v| � C(m)} < ∞.

We split

φi j (v − v′)µq ′/4(v)µ1/4(v′) = ψ i j + [φi j (v − v′)µq ′/4(v)µ1/4(v′)− ψ i j ].

Then

〈w2 K g1, g2〉 = J1[g1, g2] + J2[g1, g2], (57)

where

J1 =
∫
w(v)ψ i j (v, v′)µβ1β2(v, v

′)∂β1 g1(v
′)∂β2 g2(v)dv

′dv,

J2 =
∫
w(v)[φi j (v − v′)µq ′/4(v)µ1/4(v′)

− ψ i j ]µβ1β2(v, v
′)∂β1 g1(v

′)∂β2 g2(v)dv
′dv.

Above we are implicitly summing over |β1|, |β2| � 1. We will bound each of these
terms separately.

The J2 term is bounded as

|J2| � ||φi j (v − v′)µq ′/4(v)µ1/4(v′)− ψ i j (v, v′)||L2(R3×R3)

× ||w(v)µβ1β2(v, v
′)∂β1 g1(v

′)∂β2 g2(v)||L2(R3×R3)

� C

m

∣∣∣µ1/16∂β1 g1

∣∣∣
0

∣∣∣µq ′/16∂β2 g2

∣∣∣
�,ϑ

� C

m
|g1|σ ,� |g2|σ ,�,ϑ .

Now for the first term J1, integrations by parts over v and v′ variables yields

|J1| =
∣∣∣∣(−1)β1+β2

∫
∂β2 [w(v)∂β1{ψ i j (v, v′)µβ1β2(v, v

′)}]g1(v
′)g2(v)

∣∣∣∣

� C ||ψ i j ||C2

{∫
|v|�C(m)

|g1|2dv

}1/2 {∫
|v|�C(m)

|g2|2dv

}1/2

.

We thus conclude (51) by choosing m > 0 large enough.

Next, we estimate the linear terms with velocity derivatives.
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Lemma 8. Let |β| > 0, � ∈ R, 0 � ϑ � 2 and q > 0. If ϑ = 2 fix 0 < q < 1.
Then for any small η > 0, there exists C(η) > 0 such that

|〈w2(�, ϑ)∂β [K g1], g2〉| �

⎧⎨
⎩η

∑
|β̄|�|β|

∣∣∣∂β̄g1

∣∣∣
σ ,�

+ C(η)
∣∣χ̄C(η)g1

∣∣
�

⎫⎬
⎭ |g2|σ ,�,ϑ .

Further if τ � −1 in (10) and � = r − l, where l � 0 and r � |β|, then

−〈w2∂β [Ag], ∂βg〉 �
∣∣∂βg

∣∣2
σ ,�,ϑ

−η
∑

|β̄|=|β|

∣∣∣∂β̄g
∣∣∣2
σ ,�,ϑ

−C(η)
∑

|β̄|<|β|

∣∣∣∂β̄g
∣∣∣2
σ ,|β̄|−l,ϑ

,

where w2 = w2(�, ϑ).

Notice that the estimate involving [Ag] is much weaker than the analogous esti-
mate [9, Lemma 6, p.403] with no exponential weight. In [9], there are no derivatives
in the last term on the right. The key problem here is that derivatives of the expo-
nential weight, in particular ∂i (w

2(�, ϑ)), can grow faster than w2(�, ϑ). Then, in
some cases, we do not have enough decay to get the sharper estimate. Instead, we
weaken the estimate and use lower order derivatives to extract polynomial decay
from higher order weights. For the estimate involving [K g1] the difference is the
same as in the previous cases; we again show that K controls an exponentially
growing factor ofw(�, ϑ)(v). We remark that these estimates are not at all optimal.
It is not hard to see that you can use a smaller norm over a compact region, in
particular, for the terms with no derivatives in the [Ag] estimate.

Proof. We begin with the estimate involving ∂β [Ag]. Using Lemma 6, we have

〈w2∂β [Ag], ∂βg〉 = −|∂βg|2σ ,�,ϑ − Cβ1
β 〈w2∂β1σ

i j∂β−β1∂ j g, ∂β∂i g〉
−Cβ2

β 〈∂i (w
2)∂β2σ

i j∂β−β2∂ j g, ∂βg〉 (58)

−Cβ1
β 〈w2∂β1{σ i jviv j }∂β−β1 g, ∂βg〉

+Cβ2
β 〈w2∂β2∂iσ

i∂β−β2 g, ∂βg〉.

Here summations are over β � β1 > 0 and β � β2 � 0. We will estimate each of
these terms separately.

Case 1: The Last Two Terms.
First, we consider the last two terms in (58). We claim that

|w2∂β2∂iσ
i (v)| + |w2∂β1{σ i jviv j }| � C[1 + |v|]γ+1w2.

For the first term on the left-hand side, this follows from Lemma 4. For the estimate
for the second term on the right-hand side, from (9) and ( 50) we have

σ i j (v)viv j =
∫

R3
φi j (v − u)ui u jµ(u)du.
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Now the estimate follows from [9, Lemma 2, p.397] and |β1| > 0. Using the claim,
the last two terms in (58) are bounded by

C
∫
w2[1 + |v|]γ+1{|∂β−β1 g| + |∂β−β2 g|}|∂βg| = C

∫
|v|�m

+C
∫

|v|�m

� C
∫

|v|�m
+C

m

∣∣∣[1 + |v|] γ+2
2 {|∂β−β1 g| + |∂β−β2 g|}

∣∣∣
�,ϑ

∣∣∣[1 + |v|] γ+2
2 ∂βg

∣∣∣
�,ϑ

� C
∫

|v|�m
+C

m

∑
|β̄|�|β|

∣∣∣∂β̄g
∣∣∣
σ ,�,ϑ

∣∣∂βg
∣∣
σ ,�,ϑ

. (59)

We have used Lemma 5 in the last step. For the part |v| � m , for any m′ > 0, by
(21), we use the compact Sobolev space interpolation and Lemma 5 to get∫

|v|�m
� 1

m′
∑

|β̄|=|β|+1

∫
|v|�m

|∂β̄g|2 + Cm′
∫

|v|�m
|g|2

� C

m′
∑

|β̄|=|β|

∣∣∣∂β̄g
∣∣∣2
σ ,�

+ Cm′ |χ̄m g|2� . (60)

We used Lemma 5 again in the last step. This completes the estimate for the last
two terms in (58).

Case 2: The Third Term.
Next consider the most delicate third term in (58) when |β2| = 0. Recall ∂i (w

2)

from (54); from (55) we have |w1(v)| � C since 0 � ϑ � 2. And from (44) we
have

σ i j (v)vi = λ1(v)v j . (61)

Using Lemma 4 for the decay of λ1(v), the third term in (58) with |β2| = 0 is
∣∣∣〈∂i (w

2)σ i j∂β∂ j g, ∂βg〉
∣∣∣ � C

∫
w2(�, ϑ)[1 + |v|]γ+1

∣∣∂β∂ j g
∣∣ ∣∣∂βg

∣∣ dv,
= C

∫ (
w(�, ϑ)[1 + |v|] γ2 ∣∣∂β∂ j g

∣∣) (w(�, ϑ)[1 + |v|](γ+2)/2
∣∣∂βg

∣∣) dv.

Consider the second term in parenthesis. We will use the weight to extract extra
polynomial decay and look at this as a term with lower order derivatives in the σ
norm. Write ∂β = ∂β−ek∂k where ek is an element of the standard basis. Further,
from (10) with τ � −1, write out

w(�, ϑ) = (1 + |v|2)τ�/2 exp
(q

4
(1 + |v|2) ϑ2

)
= w(�− 1, ϑ)(1 + |v|2)τ/2

� Cw(�− 1, ϑ)[1 + |v|]−1.

Since |ek | = 1 and � = r − l with r � |β|, � − 1 � |β| − 1 − l = |β − ek | − l.
Thus,

w(�− 1, ϑ)[1 + |v|]−1 � w(|β − ek | − l, ϑ)[1 + |v|]−1.

Hence
w(�, ϑ)[1 + |v|](γ+2)/2 � w(|β − ek | − l, ϑ)[1 + |v|] γ2 .
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Then, for any large m′ > 0,
∣∣〈∂i (w

2)σ i j∂β∂ j g, ∂βg〉∣∣ is

� C
∫ (

w(�, ϑ)[1 + |v|] γ2 ∣∣∂β∂ j g
∣∣)

×
(
w(|β − ek | − l, ϑ)[1 + |v|] γ2 ∣∣∂β−ek∂k g

∣∣) dv

� C |∂βg|σ ,�,ϑ |∂β−ek g|σ ,|β−ek |−l,ϑ

� 1

m′ |∂βg|2σ ,�,ϑ + Cm′
∑

|β̄|<|β|
|∂β̄g|2

σ ,|β̄|−l,ϑ
. (62)

This completes the estimate for the third term in (58) when |β2| = 0.
Next consider the third term in (58) when |β2| > 0. Since |β2| � 1,

∣∣∣∂i (w
2(�, ϑ))∂β2σ

i j
∣∣∣ � Cw2(�, ϑ)[1 + |v|]γ+2.

Notice that the order of ∂β−β2∂ j in this case is < |β|. Again we exploit the lower
order derivative to gain some decay from the weight. Since τ � −1, we split

w(�, ϑ) = w(�− 1 + 1, ϑ) = w(�− 1, ϑ)(1 + |v|2)τ/2
� w(|β − β2| − l, ϑ)[1 + |v|]−1. (63)

In this last step we have used � = r − l, r � |β| so that r − 1 � |β − β2| since
|β2| � 1. Given m′ > 0, in this case, the third term in (58) has the upper bound

C
∫ ∣∣∣∂i (w

2(�, ϑ))∂β2σ
i j
∣∣∣ ∣∣∂β−β2∂ j g∂βg

∣∣ � C
∫
w2[1 + |v|]γ+2

∣∣∂β−β2∂ j g∂βg
∣∣

� C
∣∣∂βg

∣∣
σ ,�,ϑ

{∫
w2(�, ϑ)[1 + |v|]γ+2

∣∣∂β−β2∂ j g
∣∣2 dv

}1/2

(64)

� C
∣∣∂βg

∣∣
σ ,�,ϑ

{∫
w2(|β − β2| − l, ϑ)[1 + |v|]γ ∣∣∂β−β2∂ j g

∣∣2 dv

}1/2

� C
∣∣∂βg

∣∣
σ ,�,ϑ

∑
|β̄|�|β|−1

∣∣∣∂β̄g
∣∣∣
σ ,|β̄|−l,ϑ

� 1

m′
∣∣∂βg

∣∣2
σ ,�,ϑ

+ Cm′
∑

|β̄|�|β|−1

∣∣∣∂β̄g
∣∣∣2
σ ,|β̄|−l,ϑ

.

This completes the estimate for the third term in (58). By combining (59), (60),
(62), (64) and (65) with m and m′ chosen large enough we complete this estimate.

We now estimate 〈w2∂β [K g1], g2〉. Recalling (48), we have

w2∂βK g1 = −∂i

[
w2∂β

{
µ1/2

[
φi j ∗

{
µ1/2∂ j g1 + v j

2
µ1/2g1

}]}]

+∂i (w
2)∂β

{
µ1/2

[
φi j ∗

{
µ1/2∂ j g1 + v j

2
µ1/2g1

}]}

+w2∂β

{vi

2
µ1/2

[
φi j ∗

{
µ1/2∂ j g1 + v j

2
µ1/2g1

}]}
.
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We take derivatives only on the factor {µ1/2∂ j g1 + v jµ
1/2g1} in the convolutions

above. Upon integrating by parts for the first term, using (54) and (55) and collecting
terms we can express 〈w2∂β [K g1], g2〉 as

∑
|β1|�|β|+1,|β2|�1

∫
w2φi j (v − v′)µ1/2(v)µ1/2(v′)µ̄β1β2(v, v′)

×∂β1 g1(v
′)∂β2 g2(v)dv

′dv,

where µ̄β1β2(v, v′) is a collection of smooth functions which, for any k−th order
derivatives, satisfies

|∇k
v,v′µ̄β1β2(v′, v)| � C(1 + |v|2)|β|/2(1 + |v′|2)|β|/2.

Using the same argument as in (56) for the same 0 < q ′ < 1 as in (56) we can
rewrite 〈w2∂β [K g1], g2〉 as

∑
|β1|�|β|+1,|β2|�1

∫
w(v)φi j (v − v′)µq ′/4(v)µ1/4(v′)µβ1β2(v, v′)

× ∂β1 g1(v
′)∂β2 g2(v)dv

′dv,

where µβ1β2(v, v′) is a collection of smooth functions satisfying (for any k−th
order derivatives)

|∇k
v,v′µβ1β2(v′, v)| � Ce− q′

16 |v|2 e− 1
16 |v′|2 .

We split 〈w2∂β [K g1], g2〉 as in (57) to get

∑∫
w(v)ψ i j (v, v′)µβ1β2(v, v′)∂β1 g1(v

′)∂β2 g2(v)dv
′dv

+
∑∫

w(v){φi j (v − v′)µq ′/4(v)µ1/4(v′)− ψ i j }
× µβ1β2(v, v′)∂β1 g1(v

′)∂β2 g2(v)dv
′dv.

Using the estimates as for J2 in (57) and Lemma 5 the last term is bounded by

C

m

∑
|β̄|�|β|

∣∣∣∂β̄g1

∣∣∣
σ ,�

|g2|σ ,�,ϑ .

Since ψ i j has compact support, integrating by parts over v′ and v, the first term is
equal to

∑
|β1|�|β|+1,|β2|�1

(−1)|β1|+|β2|
∫
∂β2{w(v)∂β1 [ψ i j (v, v′)µ̄β1β2(v, v

′)]}

× g1(v
′)g2(v)dv

′dv.

Then, by Cauchy–Schwartz, this term is � C(m)
∣∣χ̄C(m)µg1

∣∣
�

∣∣χ̄C(m)g2
∣∣
�
. This

concludes case 2.
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Case 3: The Second Term.
Next, we consider the second term in (58). Since |β1| � 1, we have

|〈w2∂β1σ
i j∂β−β1∂ j g, ∂β∂i g〉| � C

∫
[1 + |v|]γ+1w2|∂β−β1∂ j g∂β∂i g|

� C
∣∣∂βg

∣∣
σ ,�,ϑ

{∫
[1 + |v|]γ+2w2(�, ϑ)|∂β−β1∂ j g|2

}1/2

.

Now using (63) with β1 = β2, given m′ > 0 this is

� C
∣∣∂βg

∣∣
σ ,�,ϑ

{∫
[1 + |v|]γ w2(|β − β1| − l, ϑ)|∂β−β1∂ j g|2

}1/2

(65)

� C
∣∣∂βg

∣∣
σ ,�,ϑ

∑
|β̄|�|β|−1

∣∣∣∂β̄g
∣∣∣
σ ,|β̄|−l,ϑ

� 1

m′
∣∣∂βg

∣∣2
σ ,�,ϑ

+Cm′
∑

|β̄|�|β|−1

∣∣∣∂β̄g
∣∣∣2
σ ,|β̄|−l,ϑ

.

We have now estimated all the terms in (58). We conclude Case 3 by first choosing
m large enough. Our lemma follows by first choosing m > 0 large. ��

Next, from Lemma 8 we get a general lower bound for L with high derivatives.
We also prove a lower bound for L with no derivatives.

Lemma 9. Let 0 � ϑ � 2, q > 0 and l � 0 with |β| > 0 and � = |β|− l. If ϑ = 2
further restrict 0 < q < 1 . Then for η > 0 small enough there exists C(η) > 0
such that

〈w2∂β [Lg], ∂βg〉 �
∣∣∂βg

∣∣2
σ ,�,ϑ

−η
∑

|β1|=|β|

∣∣∂β1 g
∣∣2
σ ,�,ϑ

−C(η)
∑

|β1|<|β|

∣∣∂β1 g
∣∣2
σ ,|β1|−l,ϑ ,

where w2 = w2(�, ϑ). If |β| = 0 we have

〈w2(�, ϑ)[Lg], g〉 � δ2
q |g|2σ ,�,ϑ − C(η)

∣∣χ̄C(η)g
∣∣2
�
,

where δq = 1 − q2 − η > 0 for η > 0 small enough or δq = 1 − η > 0 if ϑ < 2.

It turns out that the lower bound for L with no extra v derivatives and an expo-
nential weight needs a new approach. We need to use exact cancellation to make it
work in the ϑ = 2 case.

Proof. By Lemma 8, we need only consider the case with |β| = 0.
First assume 0 � ϑ < 2. In this case, after an integration by parts, (47) gives

〈w2Lg, g〉 = |g|2σ ,�,ϑ + 〈∂i (w
2)σ i j∂ j g, g〉 − 〈w2∂iσ

i g, g〉 − 〈w2 K g, g〉.
By Lemma 7, the last two terms on the right-hand side satisfy the |β| = 0 estimate.
Thus we only consider 〈∂i (w

2)σ i j∂ j g, g〉. By (54) and (61) we can write

∂i (w
2(v))σ i j (v) = w2(v)w1(v)λ1(v)v j .
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From (55), |w1(v)| � C(1 + |v|2) ϑ2 −1, and by Lemma 4,
∣∣λ1(v)v j

∣∣ � C[1 +
|v|]γ+1. Thus for any m′ > 0

∣∣∣〈∂i (w
2)σ i j∂ j g, g〉

∣∣∣ � C
∫
w2(�, ϑ)[1 + |v|]γ+1+ ϑ

2 −1
∣∣∂ j g

∣∣ |g| dv

= C
∫ (

w(�, ϑ)[1 + |v|] γ2 ∣∣∂ j g
∣∣)

×
(
w(�, ϑ)[1 + |v|] γ+2

2 + ϑ
2 −1 |g|

)

� C |g|σ ,�,ϑ
∣∣∣[1 + |v|] γ+2

2 + ϑ
2 −1g

∣∣∣
�,ϑ

� 1

m′ |g|2σ ,�,ϑ + C(m′)
∣∣∣[1 + |v|] γ+2

2 + ϑ
2 −1g

∣∣∣2
�,ϑ
.

For another m > 0 further split

∣∣∣[1 + |v|](γ+2)/2+ ϑ
2 −1g

∣∣∣2
�,ϑ

=
∫

|v|�m
+
∫

|v|>m

�
∫

|v|�m
+Cmϑ−2

∫
|v|>m

w2[1 + |v|]γ+2|g|2dv

� C(m)
∫

|v|�m
w2(�, 0)|g|2dv + Cmϑ−2 |g|2σ ,�,ϑ .

(66)

� C(m)|χ̄m g|� + Cmϑ−2 |g|2σ ,�,ϑ .

We thus complete the estimate for 0 � ϑ < 2 by choosing m and m′ large.
Finally consider the case ϑ = 2 and 0 < q < 1. We will prove this case in two

steps. Split L = −A − K . Define M(v) ≡ exp
( q

4

(
1 + |v|2)). First we will show

that there is δq > 0 such that

−〈w2(�, 2)[Ag], g〉 � δq |Mg|2σ ,� − C(δq)
∣∣χ̄C(δq )g

∣∣2
�
. (67)

Second we will establish

|Mg|2σ ,� � δq |g|2σ ,�,2 − C(δq)|gχ̄C(δq )|2�, (68)

where δq = 1 − q2 − η
2 > 0 since η > 0 can be chosen arbitrarily small. This

will be enough to establish the case ϑ = 2 because the K part is controlled by
Lemma 7.
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We now establish (67). By (47), we obtain

−M[Ag] = −M∂i {σ i j∂ j g} + Mσ i j vi

2

v j

2
g − M∂iσ

i g

= −∂i {Mσ i j∂ j g} + qσ i j vi

2
M∂ j g + Mσ i j vi

2

v j

2
g − M∂iσ

i g

= −∂i {σ i j∂ j [Mg]} + q∂i (σ
i j v j

2
Mg)+ qσ i j vi

2
M∂ j g

+ Mσ i j vi

2

v j

2
g − M∂iσ

i g

= −∂i {σ i j∂ j [Mg]} + q∂i {σ i Mg} + qσ j∂ j [Mg]
− q2 Mσ i j vi

2

v j

2
g + Mσ i j vi

2

v j

2
g − M∂iσ

i g.

Notice that after an integration by parts

〈(1 + |v|2)τ�{q∂i {σ i Mg} + qσ j∂ j [Mg]},Mg〉 = −q〈∂i (1 + |v|2)τ�σ i Mg,Mg〉.

Also, by (10),

−〈w2(�, 2)[Ag], g〉 = −〈(1 + |v|2)τ�M[Ag],Mg〉.

We therefore have

−〈w2(�, 2)[Ag], g〉 =
∫
(1 + |v|2)τ�

{
σ i j∂ j [Mg]∂i [Mg]

+(1 − q2)σ i j vi

2

v j

2
[Mg]2

}
dv −

∫
w2(�, 2)∂iσ

i g2dv

+
∫
∂i (1 + |v|2)τ�

{
σ i j {∂ j [Mg]}[Mg] − qσ i [Mg]2

}
dv

� (1 − q2)|Mg|2σ,� −
∫
w2(�, 2)∂iσ

i g2dv

+
∫
∂i (1 + |v|2)τ�

{
σ i j {∂ j [Mg]}[Mg] − qσ i [Mg]2

}
dv.

By Lemma 4,
∣∣∂iσ

i
∣∣ � C[1 + |v|]γ+1. Then as in (66), for m > 0, we have

∫
w2(�, 2)

∣∣∣∂iσ
i
∣∣∣ g2dv =

∫
|v|�m

+
∫

|v|>m

�
∫

|v|�m
+C

m

∫
|v|>m

(1 + |v|2)τ�[1 + |v|]γ+2[Mg]2dv

�
∫

|v|�m
+C

m
|Mg|2σ ,�

� C(m) |χ̄m g|2� + η

4
|Mg|2σ ,� ,

(69)
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where the last line follows from choosing m > 0 large enough. We integrate by
parts on the next term to obtain
∫
∂i (1 + |v|2)τ�σ i j {∂ j [Mg]}[Mg]dv = −1

2

∫
∂ j

{
∂i (1 + |v|2)τ�σ i j

}
[Mg]2dv.

By Lemma 4 and (10),
∣∣∣∂i (1 + |v|2)τ�σ i

∣∣∣+
∣∣∣∂ j

{
∂i (1 + |v|2)τ�σ i j

}∣∣∣ � C(1 + |v|2)τ�[1 + |v|]γ+1.

Thus the estimate for the final term follows from the same argument as (69). This
establishes (67).

We finally establish (68). Notice that

|Mg|2σ ,� =
∫
(1 + |v|2)τ�

{
σ i j∂i [Mg]∂ j [Mg] + σ i j vi

2

v j

2
[gM]2

}
dv.

We expand the first term in |Mg|2σ ,� to obtain

∫
(1 + |v|2)τ�σ i j∂i [Mg]∂ j [Mg]dv

=
∫
(1 + |v|2)τ�M2σ i j∂i g∂ j gdv

+q2
∫
(1 + |v|2)τ�M2σ i j vi

2

v j

2
g2dv

+2q
∫
(1 + |v|2)τ�M2σ i j vi

2
{∂ j g}gdv

=
∫
w2(�, 2)

{
σ i j∂i g∂ j g+q2σ i j vi

2

v j

2
g2
}

dv

+2q
∫
(1 + |v|2)τ�M2σ j {∂ j g}gdv. (70)

In the last step we used (10). We integrate by parts on the last term to obtain

2q
∫
(1 + |v|2)τ�M2σ j {∂ j g}gdv = q

∫
(1 + |v|2)τ�M2σ j {∂ j g

2}dv

= −q
∫
(1 + |v|2)τ�M2∂ jσ

j g2dv

− q
∫
∂ j (1 + |v|2)τ�M2σ j g2dv

− 2q2
∫
(1 + |v|2)τ�M2σ i j vi

2

v j

2
g2dv.

Since ∂ j (1 + |v|2)τ� = (1 + |v|2)τ� {2τ�(1 + |v|2)−1v j
}
, we define the error as

w̄(v) = q
{
∂ jσ

j + 2τ�(1 + |v|2)−1σ jv j

}
.
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Then (70) is

=
∫
w2(�, 2)

{
σ i j∂i g∂ j g − q2σ i j vi

2

v j

2
g2
}

dv −
∫
w2(�, 2)w̄g2dv.

Adding the second term in |Mg|2σ ,� to both sides of the last display yields

|Mg|2σ ,� � (1 − q2)|g|2σ ,�,2 −
∫
w2(�, 2)w̄g2dv.

By Lemma 4 we have

|w̄(v)| � C[1 + |v|]γ+1.

Thus, using (69), for any small η > 0 we have

∫
w2(�, 2)|w̄|g2dv � C(m)|gχ̄m |2� + η

2
|g|2σ ,�,2.

This completes the estimate (68) and the proof.

We thus conclude our estimates for the linear terms and finish the section by
estimating the nonlinear term.

Lemma 10. Let |α| + |β| � N, 0 � ϑ � 2, q > 0 and l � 0 with � = |β| − l. If
ϑ = 2 restrict 0 < q < 1 . Then

〈w2(�, ϑ)∂αβ 	[g1, g2], ∂αβ g3〉 (71)

� C
∑{

|∂α1

β̄
g1|�|∂α−α1

β−β1
g2|σ ,�,ϑ + |∂α1

β̄
g1|σ ,�|∂α−α1

β−β1
g2|�,ϑ

}
|∂αβ g3|σ ,�,ϑ ,

where summation is over |α1| + |β1| � N , β̄ � β1 � β.

Furthermore,

(
w2(�, ϑ)∂αβ 	[g1, g2], ∂αβ g3

)
(72)

� C
{
E1/2

l (g1)D1/2
l,ϑ (g2)+ D1/2

l (g1)E1/2
l,ϑ (g2)

}
‖∂αβ g3‖σ ,�,ϑ .

The proof of Lemma 10 is more or less the same as in [9] except for a few
details. The differences mainly come from taking derivatives of the exponential
weight w(�, ϑ)(v) which creates extra polynomial growth.

Proof. Recall 	[g1, g2] in (49). By the product rule, we expand

〈w2∂αβ 	[g1,g2], ∂αβ g2〉 =
∑

Cα1
α Cβ1

β × Gα1β1 ,
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where Gα1β1 takes the form

−〈w2{φi j ∗ ∂β1 [µ1/2∂α1 g1]}∂ j∂
α−α1
β−β1

g2, ∂i∂
α
β g3〉 (73)

−〈w2
{
φi j ∗ ∂β1

[vi

2
µ1/2∂α1 g1

]}
∂ j∂

α−α1
β−β1

g2, ∂
α
β g3〉 (74)

+〈w2
{
φi j ∗ ∂β1

[
µ1/2∂ j∂

α1 g1

]}
∂
α−α1
β−β1

g2, ∂i∂
α
β g3〉 (75)

+〈w2
{
φi j ∗ ∂β1

[vi

2
µ1/2∂ j∂

α1 g1

]}
∂
α−α1
β−β1

g2, ∂
α
β g3〉 (76)

−〈∂i [w2]{φi j ∗ ∂β1 [µ1/2∂α1 g1]}∂ j∂
α−α1
β−β1

g2, ∂
α
β g3〉 (77)

+〈∂i [w2]{φi j ∗ ∂β1 [µ1/2∂ j∂
α1 g1]}∂α−α1

β−β1
g2, ∂

α
β g3〉. (78)

The last two terms appear when we integrate by parts over the vi variable.
We estimate the last term (78) first. Recall from (54 ) and (55) that ∂i [w2] =

w2(v)w1(v)vi , where |w1(v)| � C . By first summing over i and using (50) we can
rewrite (78) as

〈[w2w1]{φi j ∗ vi∂β1 [µ1/2∂ j∂
α1 g1]}∂α−α1

β−β1
g2, ∂

α
β g3〉.

Since −1 � γ + 2 < 0, φi j (v) ∈ L2
loc(R

3) and |∂β1{µ1/2}| � Cµ1/4, we deduce
by the Cauchy–Schwartz inequality and Lemma 5 that

{φi j ∗ vi∂β1 [µ1/2∂ j∂
α1 g1]} � [|φi j |2 ∗ µ1/8]1/2(v)

∑
β̄�β1

|µ1/32∂ j∂
α1

β̄
g1|�.

� C[1 + |v|]γ+2
∑
β̄�β1

∣∣∣∂α1

β̄
g1

∣∣∣
σ ,�
, (79)

where we have used Lemma 2 in [9] to argue that

[|φi j |2 ∗ µ1/8]1/2(v) � C[1 + |v|]γ+2.

Using the above, (78) is bounded by Lemma 5 as

C
∑
β̄�β1

∣∣∣∂α1

β̄
g1

∣∣∣
σ ,�

∫
w2(�, ϑ)[1 + |v|]γ+2|∂α−α1

β−β1
g2∂

α
β g3|dv

� C
∑
β̄�β1

|∂α1

β̄
g1|σ ,�|∂α−α1

β−β1
g2|�,ϑ |[1 + |v|]γ+2∂αβ g3|�,ϑ

� C
∑
β̄�β1

|∂α1

β̄
g1|σ ,�|∂α−α1

β−β1
g2|�,ϑ |∂αβ g3|σ ,�,ϑ .

This completes the estimate for (78).
We now estimate (73)-(77). We decompose their double integration region

[v, v′] ∈ R
3 × R

3 into three parts

{|v| � 1}, {2|v′| � |v|, |v| � 1} and {2|v′| � |v|, |v| � 1}.
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Case 1: Terms (73)-(77) over {|v| � 1}.
For the first part {|v| � 1}, recall φi j (v) = O(|v|γ+2) ∈ L2

loc. As in (79), we
have

|φi j ∗ ∂β1 [µ1/2∂α1 g1]| + |φi j ∗ ∂β1 [viµ
1/2∂α1 g1]| + |φi j ∗ vi∂β1 [µ1/2∂α1 g1]|

� C[1 + |v|]γ+2
∑
β̄�β

|∂α1

β̄
g1|�,

|φi j ∗ ∂β1 [µ1/2∂ j∂
α1 g1]| + |φi j ∗ ∂β1 [{viµ

1/2}∂ j∂
α1 g1]|

� C[1 + |v|]γ+2
∑
β̄�β

|∂α1

β̄
g1|σ ,�.

Hence their corresponding integrands over the region {|v| � 1} are bounded by

C
∑∣∣∣∂α1

β̄
g1

∣∣∣
�
[1 + |v|]γ+2|∂ j∂

α−α1
β−β1

g2|
[
|∂i∂

α
β g3| + |∂αβ g3|

]

+C
∑∣∣∣∂α1

β̄
g1

∣∣∣
σ ,�

[1 + |v|]γ+2|∂α−α1
β−β1

g2|
[
|∂i∂

α
β g3| + |∂αβ g3|

]
,

whose v−integral over {|v| � 1} is clearly bounded by the right-hand side of (71).
We thus conclude the first part of {|v| � 1} for (73)–(77).

Case 2: Terms (73)-(77) over {2|v′| � |v|, |v| � 1}.
For the second part {2|v′| � |v|, |v| � 1}, we have

|∂β1µ
1/2(v′)| + |∂β1{v′

jµ
1/2(v′)}| � Cµ1/8(v′)µ1/32(v).

Thus, by the same type of estimates as in (79), using the region, we have

|φi j ∗ ∂β1 [µ1/2∂α1 g1]| + |φi j ∗ ∂β1 [viµ
1/2∂α1 g1]| + |φi j ∗ vi∂β1 [µ1/2∂α1 g1]|

� C[1 + |v|]γ+2µ1/64(v)
∑
β̄�β

|∂α1

β̄
g1|�,

|φi j ∗ ∂β1 [µ1/2∂ j∂
α1 g1]| + |φi j ∗ ∂β1 [{viµ

1/2}∂ j∂
α1 g1]|

� C[1 + |v|]γ+2µ1/64(v)
∑
β̄�β

|∂α1

β̄
g1|σ ,�.

And then the v− integrands in (73) to (77) over this region are bounded by

C
∑∣∣∣∂α1

β̄
g1

∣∣∣
�
w2(�, ϑ)[1 + |v|]γ+2µ1/64(v)|∂ j∂

α−α1
β−β1

g2|
[
|∂i∂

α
β g3| + |∂αβ g3|

]

+C
∑∣∣∣∂α1

β̄
g1

∣∣∣
σ ,�
w2(�, ϑ)[1 + |v|]γ+2µ1/64(v)|∂α−α1

β−β1
g2|
[
|∂i∂

α
β g3| + |∂αβ g3|

]
.

By Lemma 5, its v−integral is bounded by the right-hand side of (71) because of
the fast decaying factor µ1/64(v). We thus conclude the estimate for the second
region {2|v′| � |v|, |v| � 1 } for (73) to (77).

Case 3: Terms (73)-(77) over {2|v′| � |v|, |v| � 1}.
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We finally consider the third part of {2|v′| � |v|, |v| � 1}, for which we shall
estimate each term from (73) to (77). The key is to Taylor expand φi j (v − v′). To
estimate (73) over the this region we expand φi j (v − v′) to get

φi j (v − v′) = φi j (v)−
∑

k

∂kφ
i j (v)v′

k + 1

2

∑
k,l

∂klφ
i j (v̄)v′

kv
′
l , (80)

where v̄ is between v and v − v′. We plug (80) into the integrand of (73). From
(42), (44) and ( 50), we can decompose ∂ j∂

α−α1
β−β1

g2 and ∂i∂
α
β g3 into their Pv parts

as well as I − Pv parts. For the first term in the expansion (80) we have∑
i j

φi j (v)∂ j∂
α−α1
β−β1

g2(v)∂i∂
α
β g3(v)

=
∑

i j

φi j (v){[I − Pv]∂ j∂
α−α1
β−β1

g2(v)}{[I − Pv]∂i∂
α
β g3(v)}.

Here we have used (50) so that sum of terms with either Pv∂ j∂
α−α1
β−β1

g2 or Pv∂i∂
α
β g3

vanishes. The absolute value of this is bounded by

C[1 + |v|]γ+2|[I − Pv]∂ j∂
α−α1
β−β1

g2(v)| × |[I − Pv]∂i∂
α
β g3(v)|. (81)

For the second term in the expansion (80), by taking a k derivative of∑
i, j

φi j (v)viv j = 0

we have ∑
i, j

∂kφ
i j (v)viv j = −2

∑
j

φk j (v)v j = 0.

Therefore ∑
i, j

∂kφ
i j (v)Pv∂ j∂

α−α1
β−β1

g2 Pv∂i∂
α
β g3 = 0.

Splitting ∂ j∂
α−α1
β−β1

g2 and ∂i∂
α
β g3 into their Pv and I − Pv parts yields

∑
i, j

∂kφ
i j (v)∂ j∂

α−α1
β−β1

g2(v)∂i∂
α
β g3(v)

=
∑
i, j

∂kφ
i j (v){[Pv∂ j∂

α−α1
β−β1

g2][I − Pv]∂i∂
α
β g3

+[I −Pv]∂ j∂
α−α1
β−β1

g2[Pv∂i∂
α
β g3]}+

∑
i, j

∂kφ
i j (v)[I −Pv]∂ j∂

α−α1
β−β1

g2[I −Pv]∂i∂
α
β g3.

Notice that |∂kφ
i j (v)| � C[1 + |v|]γ+1 for |v| � 1, we therefore majorize the

above by

C[1 + |v|]γ /2{|Pv∂ j∂
α−α1
β−β1

g2| + |Pv∂i∂
α
β g3|}

×[1 + |v|](γ+2)/2{|[I − Pv]∂ j∂
α−α1
β−β1

g2| + |[I − Pv]∂i∂
α
β g3|} (82)

+C[1 + |v|]γ+1|[I − Pv]∂ j∂
α−α1
β−β1

g2||[I − Pv]∂i∂
α
β g3|.
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Next, we estimate the third term in (80). Using the region we have

1

2
|v| � |v| − |v′| � |v̄| � |v′| + |v| � 3

2
|v|. (83)

Thus
|∂klφ

i j (v̄)| � C[1 + |v|]γ ,
and∣∣∣∂klφ

i j (v̄)∂ j∂
α−α1
β−β1

g2(v)∂i∂
α
β g3(v)

∣∣∣ � C[1 + |v|]γ |∂ j∂
α−α1
β−β1

g2∂i∂
α
β g3|. (84)

Combining (80), (81), (82) and (84) we obtain the estimate∣∣∣∣∣∣
∑
i, j

φi j (v − v′)∂i∂
α−α1
β−β1

g2∂i∂
α
β g3

∣∣∣∣∣∣

� C[1 + |v′|]2

∣∣∣∣∣∣
∑
i, j

φi j (v)∂ j∂
α−α1
β−β1

g2(v)∂i∂
α
β g3(v)

∣∣∣∣∣∣

+C[1 + |v′|]2

∣∣∣∣∣∣
∑
i, j

∂kφ
i j (v)∂ j∂

α−α1
β−β1

g2(v)∂i∂
α
β g3(v)

∣∣∣∣∣∣
+C[1 + |v′|]2

∑
i, j

∣∣∣∂klφ
i j (v̄)∂ j∂

α−α1
β−β1

g2(v)∂i∂
α
β g3(v)

∣∣∣

� C[1 + |v′|]2{σ i j∂i∂
α−α1
β−β1

g2∂ j∂
α−α1
β−β1

g2}1/2{σ i j∂i∂
α
β g3∂ j∂

α
β g3}1/2,

where we have used (45) in the last line. The v integrand over {2|v′| � |v|, |v| � 1}
in (73) is thus bounded by

w2
∫

[1 + |v′|]2µ1/4(v′)|∂α1

β̄
g1(v

′)|dv′

×{σ i j∂i∂
α−α1
β−β1

g2∂ j∂
α−α1
β−β1

g2}1/2{σ i j∂i∂
α
β g3∂ j∂

α
β g3}1/2

� C |∂α
β̄

g1|�{w2σ i j∂i∂
α−α1
β−β1

g2∂ j∂
α−α1
β−β1

g2}1/2{w2σ i j∂i∂
α
β g3∂ j∂

α
β g3}1/2.

Its further integration over v is bounded by the right-hand side of (71).
We now consider the second term (74). We again expand φi j (v − v′) as

φi j (v − v′) = φi j (v)−
∑

k

∂kφ
i j (v̄)v′

k, (85)

with v̄ between v and v − v′. Since
∑

j φ
i j (v)v j = 0 we obtain as before

∑
j

φi j (v)∂ j∂
α−α1
β−β1

g2(v)∂
α
β g3(v) =

∑
j

φi j (v){I − Pv}∂ j∂
α−α1
β−β1

g2(v)× ∂αβ g3(v)

� C[1 + |v|]γ+2|{I − Pv}∂ j∂
α−α1
β−β1

g2(v)||∂αβ g3(v)| (86)

� C |[1 + |v|] γ+2
2 {I − Pv}∂ j∂

α−α1
β−β1

g2(v)||[1 + |v|] γ+2
2 ∂αβ g3(v)|

� C{σ i j∂i∂
α−α1
β−β1

g2∂ j∂
α−α1
β−β1

g2}1/2{σ i jviv j |∂αβ g3|2}1/2,
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where we have used (45). From (83), |∂kφ
i j (v̄)| � C[1 + |v|]γ+1. Hence

|∂kφ
i j (v̄)∂ j∂

α−α1
β−β1

g2(v)∂
α
β g3(v)| (87)

� C[1 + |v|]γ+1{|∂ j∂
α−α1
β−β1

g2(v)|}{|∂αβ g3(v)|}
� C{[1 + |v|]γ /2|∂ j∂

α−α1
β−β1

g2(v)|}{[1 + |v|] γ+2
2 |∂αβ g3(v)|}

� C{σ i j∂i∂
α−α1
β−β1

g2∂ j∂
α−α1
β−β1

g2}1/2{σ i jviv j |∂αβ g3|2}1/2.

From (86) and (87), we thus conclude
∣∣∣∣∣∣
∑

i j

φi j (v − v′)∂ j∂
α−α1
β−β1

g2(v)∂
α
β g3(v)

∣∣∣∣∣∣
� C[1 + |v′|]{σ i j∂i∂

α−α1
β−β1

g2∂ j∂
α−α1
β−β1

g2}1/2{σ i jviv j |∂αβ g3|2}1/2.

We thus conclude that the v integrand in (74) can be majorized by

C
∑∫

[1 + |v′|]µ1/4(v′)|∂α1

β̄
g1(v

′)|dv′

×w2{σ i j∂i∂
α−α1
β−β1

g2∂ j∂
α−α1
β−β1

g2}1/2{σ i j∂i∂
α
β g3∂ j∂

α
β g3}1/2

� C
∑

|∂α1

β̄
g1|�{w2σ i j∂i∂

α−α1
β−β1

g2∂ j∂
α−α1
β−β1

g2}1/2{w2σ i j∂i∂
α
β g3∂ j∂

α
β g3}1/2.

Further integration over v shows that this is bounded by the right-hand side of (71).
We now consider the third term (75) over {2|v′| � |v|, |v| � 1}. We use an

integration by parts inside the convolution to split (75) into two parts

φi j ∗∂β1 [µ1/2∂ j∂
α1 g1] = ∂ jφ

i j ∗∂β1 [µ1/2∂α1 g1]−φi j ∗∂β1 [∂ jµ
1/2 ∂α1 g1]. (88)

Recall expansion (85) and decompose

∂i∂
α
β g3 = Pv∂i∂

α
β g3 + [I − Pv]∂i∂

α
β g3.

By similar estimates to (86) and (87), the second part of ( 75) can be estimated as
∫

{|v|�1,2|v′|�|v|}
|w2 φi j (v − v′)∂β1 [∂ jµ

1/2(v′)∂α1 g1(v
′)]∂α−α1

β−β1
g2(v)∂i∂

α
β g3(v)|

=
∫

|v|�1,2|v′|�|v|
|w2[φi j (v)−∂kφ

i j (v̄)v′
k]∂β1 [∂ jµ

1/2(v′)∂α1 g1(v
′)]∂α−α1

β−β1
g2∂i∂

α
β g3|

� C
∣∣∣∂α1

β̄
g1

∣∣∣
�

∣∣∣[1 + |v|] γ+2
2 ∂

α−α1
β−β1

g2

∣∣∣
�,ϑ

∣∣∣wϑ [1 + |v|] γ+2
2 {I − Pv}∂i∂

α
β g3

∣∣∣
�,ϑ

+C
∣∣∣∂α1

β̄
g1

∣∣∣
�

∣∣∣[1 + |v|] γ+2
2 ∂

α−α1
β−β1

g2

∣∣∣
�,ϑ

∣∣∣[1 + |v|]γ /2∂i∂
α
β g3

∣∣∣
�,ϑ
.

By Lemma 5, this is bounded by the right-hand side of (71).
For the first part of (75) by (88) notice that our integration region implies

|∂ jφ
i j (v − v′)| � C[1 + |v|]γ+1.
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We thus have∫
{|v|�1,2|v′|�|v|}

w2 |∂ jφ
i j (v − v′)|∂β1 [µ1/2(v′)∂α1 g1(v

′)]∂α−α1
β−β1

g2(v)∂i∂
α
β g3(v)

� C
∑
β̄�β1

∣∣∣∂α1

β̄
g1

∣∣∣
�

∣∣∣[1 + |v|] γ+2
2 ∂

α−α1
β−β1

g2

∣∣∣
�,ϑ

∣∣∣[1 + |v|]γ /2∂ j∂
α
β g3

∣∣∣
�,ϑ
,

which is bounded by the right-hand side of (71) by Lemma 5.
Next consider (76) over {2|v′| � |v|, |v| � 1}. We split (76) as in (88)

φi j ∗∂β1 [viµ
1/2∂ j∂

α1 g1] = ∂ jφ
i j ∗∂β1 [viµ

1/2∂α1 g1]−φi j ∗∂β1 [∂ j {viµ
1/2} ∂α1 g1].

Since |φi j (v − v′)| � C[1 + |v|]γ+2, and |∂ jφ
i j (v − v′)| � C[1 + |v|]γ+1 (76)

is bounded by∫
w2[1 + |v|]γ+1|∂β1 [v′

iµ
1/2(v′)∂α1 g1(v

′)]∂α−α1
β−β1

g2∂
α
β g3|dv′dv

+
∫
w2[1 + |v|]γ+2|∂β1 [∂ j {v′

iµ
1/2(v′)}∂α1 g1(v

′)]∂α−α1
β−β1

g2∂
α
β g3|dv′dv

� C
∑
β̄�β1

∣∣∣∂α1

β̄
g1

∣∣∣
�

∣∣∣∂α−α1
β−β1

g2

∣∣∣
σ ,�,ϑ

∣∣∣∂αβ g3

∣∣∣
σ ,�,ϑ

.

We thus conclude the estimate for (76).
Finally, consider the term (77) over {2|v′| � |v|, |v| � 1}. First sum over vi so

that (77) is given by

〈[w2w1]{φi j ∗ vi∂β1 [µ1/2∂α1 g1]}∂ j∂
α−α1
β−β1

g2, ∂
α
β g3〉.

We again expand φi j (v − v′) as in (85). By (50), we have the estimates (86) and
(87). Plugging (86) and (87) into (85), we thus conclude that the v integrand in (77)
can be majorized by

C
∑∫

[1 + |v′|]2µ1/4(v′)|∂α1

β̄
g1(v

′)|dv′

×w2{σ i j∂i∂
α−α1
β−β1

g2∂ j∂
α−α1
β−β1

g2}1/2{σ i jviv j |∂αβ g3|2}1/2

� C
∑

|∂α1

β̄
g1|�{w2σ i j∂i∂

α−α1
β−β1

g2∂ j∂
α−α1
β−β1

g2}1/2{w2σ i jviv j |∂αβ g3|2}1/2.

By further integrating over v, this is bounded by the right-hand side of (71). Thus,
the proof of (71) is complete.

The proof of (72) now follows from the Sobolev embedding H2(T3) ⊂ L∞(T3)

and (71). Without loss of generality, assume |α1| + |β̄| � N/2 in (71). Then(
sup

x
|∂α1

β̄
g1(x)|�

)
|∂α−α1
β−β1

g2|σ ,�,ϑ +
(

sup
x

|∂α1

β̄
g1(x)|σ ,�

)
|∂α−α1
β−β1

g2|�,ϑ

�
(∑

‖∂α′
β ′ g1‖�

)
|∂α−α1
β−β1

g2|σ ,�,ϑ +
(∑

‖∂α′
β ′ g1‖σ ,�

)
|∂α−α1
β−β1

g2|�,ϑ ,

where the summation is over |α′| + |β ′| � N
2 + 2 � N . We deduce (72) by

integrating (71) over T
3 and using this computation.
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4. Energy Estimate and Global Existence

In this section we will prove the energy estimate which is a crucial step in
constructing global solutions. By now, it is standard to prove local existence of
small solutions using the estimates either in Section 2 for the Boltzmann case or
Section 3 for the Landau case:

Theorem 3. For any sufficiently small M∗ > 0, T ∗ > 0 with T ∗ � M∗
2 and

1

2

∑
|α|+|β|�N

||∂αβ f0||2|β|−l,ϑ � M∗

2
,

there is an unique classical solution f (t, x, v) to (5) in either the Boltzmann or the
Landau case in [0, T ∗)× T

3 × R
3 such that

sup
0�t�T ∗

⎧⎨
⎩

1

2

∑
|α|+|β|�N

||∂αβ f ||2|β|−l,ϑ (t)+
∫ t

0
Dl,ϑ ( f )(s)ds

⎫⎬
⎭ � M∗,

and 1
2

∑
|α|+|β|�N ||∂αβ f ||2|β|−l,ϑ (t)+

∫ t
0 Dl,ϑ ( f )(s)ds is continuous over [0, T ∗).

Next, we define some notation. For fixed N � 8, 0 � m � N and ϑ, q, l � 0,
a modified instant energy functional satisfies

1

C
Em

l,ϑ (g)(t) �
∑

|β|�m,|α|+|β|�N

||∂αβ g(t)||2|β|−l,ϑ � CEm
l,ϑ (g)(t). (89)

Similarly the modified dissipation rate is given by

Dm
l,ϑ (g)(t) ≡

∑
|β|�m,|α|+|β|�N

||∂αβ g(t)||2D,|β|−l,ϑ . (90)

Note that, E N
l,ϑ (g)(t) = El,ϑ (g)(t) and DN

l,ϑ (g)(t) = Dl,ϑ (g)(t). And as before, we
will write Em

l,0(g)(t) = Em
l (g)(t) and Dm

l,0(g)(t) = Dm
l (g)(t). Now we are ready

to state a result from equation (4.5) in [14] using this new notation:

Lemma 11. Let f (t, x, v) be a classical solution to (5) satisfying (15) in either the
Boltzmann or the Landau case. In the Boltzmann case assume τ � γ but in the
Landau case assume τ � −1 in (10). For any l � 0, there exists Ml , δl = δl(Ml) >

0 such that if
1

2

∑
|α|+|β|�N

||∂αβ f ||2|β|−l(t) � Ml , (91)

then for any 0 � m � N we have an instant energy functional such that

d

dt
Em

l ( f )(t)+ Dm
l ( f )(t) � C

√
El( f )(t)Dl( f )(t). (92)
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We will bootstrap this energy estimate without an exponential weight (ϑ = 0)
to Corollary 1 in the Boltzmann case and Lemma 9 on the Landau case to obtain
the following general energy estimate.

Lemma 12. Fix N � 8, 0 < ϑ � 2, q > 0 and l � 0. If ϑ = 2 let 0 < q < 1.
In the Boltzmann case assume τ � γ but in the Landau case assume τ � −1 in
(10). Let f (t, x, v) be a classical solution to (5) satisfying (15) and (91) in either
the Boltzmann or the Landau case. For any given 0 � m � N there is a modified
instant energy functional such that

d

dt
Em

l,ϑ ( f )(t)+ Dm
l,ϑ ( f )(t) � CE1/2

l,ϑ ( f )(t)Dl,ϑ ( f )(t). (93)

Proof. We use an induction over m, the order of the v−derivatives. For m = 0, by
taking the pure ∂α derivatives of (5) we obtain

{∂t + v · ∇x } ∂α f + L{∂α f } =
∑
α1�α

Cα1
α 	(∂

α1 f,∂
α−α1 f ). (94)

Multiply w2(−l, ϑ)∂α f with (94), integrate over T
3 × R

3 and sum over |α| � N
to deduce the following for some constant C > 0,

∑
|α|�N

{
1

2

d

dt
‖∂α f (t)‖2−l,ϑ +

(
w2(−l, ϑ)L{∂α f (t)}, ∂α f (t)

)}

� CE1/2
l,ϑ ( f )(t)Dl,ϑ ( f )(t). (95)

We have used Lemma 3 in the Boltzmann case and (72) in the Landau case to bound
the right-hand side of (94). Notice that Lemma 2 (in the Boltzmann case) implies

(
w2(−l, ϑ)L{∂α f (t)}, ∂α f (t)

)
= ‖∂α f (t)‖2

ν,−l,ϑ

−
(
w2(−l, ϑ)K {∂α f (t)}, ∂α f (t)

)

� 1

2
‖∂α f (t)‖2

ν,−l,ϑ − C‖∂α f (t)‖2
ν,−l ,

where C > 0 is a large constant. In the Landau case, Lemma 9 gives
(
w2(−l, ϑ)L{∂α f (t)}, ∂α f (t)

)
� δ2

q‖∂α f (t)‖2
σ ,−l,ϑ − C‖χ̄C∂

α f (t)‖2−l

� δ2
q‖∂α f (t)‖2

σ ,−l,ϑ − C‖∂α f (t)‖2
σ ,−l .

Without loss of generality say 0 < δq <
1
2 . Then in either case, plugging these into

(95) we have

∑
|α|�N

{
1

2

d

dt
‖∂α f (t)‖2−l,ϑ + δ2

q‖∂α f (t)‖2
D,−l,ϑ − C‖∂α f (t)‖2

D,−l

}

� C
√

El,ϑ ( f )(t)Dl,ϑ ( f )(t).
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Add this inequality to (92) with m = 0, possibly multiplied by a large constant, to
obtain (93) with m = 0.

Now assume the Lemma is valid for some fixed m > 0. For |β| = m +1, taking
∂αβ of (5) we obtain

{∂t + v · ∇x } ∂αβ f + ∂β{L∂α f } (96)

= −
∑

|β1|=1

Cβ1
β ∂β1v · ∇x∂

α
β−β1

f +
∑

Cα1
α ∂β	(∂

α1 f,∂
α−α1 f ).

We take the inner product of (96) with w2(|β| − l, ϑ)∂αβ f over T
3 × R

3. The first

inner product on the left is equal to 1
2

d
dt ||∂αβ f (t)||2|β|−l,ϑ . From either Corollary 1

in the Boltzmann case or Lemma 9 in the Landau case, we deduce that the inner
product of ∂β{L∂α f } is bounded from below as
∑

|β|=m+1

(
w2∂β{L∂α f }, ∂αβ f

)
� δ2

q

∑
|β|=m+1

||∂αβ f ||2D,|β|−l,ϑ−C
∑

|β̄|�m

||∂α
β̄

f ||2D,|β̄|−l,ϑ
.

Since |β1| = 1, by (10) and (14), as in [10] the streaming term on the right-hand
side of (96) is bounded by

(w2(|β| − l, ϑ){∂β1v j }∂x j ∂
α
β−β1

f, ∂αβ f ) �
∫
w2(|β| − l, ϑ)|∂x j ∂

α
β−β1

f ∂αβ f |dxdv

�
∥∥∥w(|β| + 1/2 − l, ϑ)∂αβ f

∥∥∥
∥∥∥w(1/2 + {|β| − 1} − l, ϑ)∂x j ∂

α
β−β1

f
∥∥∥

� η

∥∥∥∂αβ f
∥∥∥2

D,|β|−l,ϑ
+ Cη

∥∥∥∂x j ∂
α
β−β1

f
∥∥∥2

D,|β−β1|−l,ϑ
.

Further, by Lemma 3 in the Boltzmann case and Lemma 10 in the Landau case, the
inner product involving	 on the right-hand side of (96) is� CE1/2

l,ϑ ( f )(t)Dl,ϑ ( f )(t).
Collect terms and sum over |β| = m + 1, |α| + |β| � N to obtain

∑
|β|=m+1,|α|+|β|�N

{
1

2

d

dt
||∂αβ f (t)||2|β|−l,ϑ +

(
δ2

q − Wη
) ∥∥∥∂αβ f

∥∥∥2

D,|β|−l,ϑ

}

�
∑

|β|=m+1,|α|+|β|�N

C

⎛
⎝ ∑

|β1|=1

∥∥∥∂x j ∂
α
β−β1

f
∥∥∥2

D,|β−β1|−l,ϑ
+
∑

|β̄|�m

||∂α
β̄

f ||2D,|β|−l,ϑ

⎞
⎠

+C Zm+1E1/2
l,ϑ ( f )(t)Dl,ϑ ( f )(t).

Here Zm+1 =∑|β|=m+1,|α|+|β|�N 1 and W =∑|β1|=1 Cβ1
β . Choosing η > 0 such

that δ2
q − Wη = δ2

q
2 > 0 we get

∑
|β|=m+1,|α|+|β|�N

{
1

2

d

dt
||∂αβ f (t)||2|β|−l,ϑ + δ2

q

2

∥∥∥∂αβ f
∥∥∥2

D,|β|−l,ϑ

}

� C̃
∑

|β|�m,|α|+|β|�N

||∂αβ f ||2D,|β|−l,ϑ + C Zm+1
√

E l,ϑ ( f )(t)Dl,ϑ ( f )(t).
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Choose Ām+1 such that Ām+1 − C̃ � 1. Now multiply (93) for |β| � m by Ām+1
and add it to the display above to obtain (93) for |β| � m + 1. We thus conclude
the energy estimate. ��

With Lemma 12, we can prove existence of global in time solutions with an
exponential weight using exactly the same argument as in the last section of [11].

5. Proof of Exponential Decay

In this section we prove exponential decay using the differential inequality (16)
and the uniform bound (17) with ϑ > 0. The main difficulty in establishing decay
from (16) is rooted in the fact that the dissipation Dl,ϑ ( f )(t) is in general weaker
than the instant energy El,ϑ ( f )(t). As in the work of Caflisch [1], the key point
is to split El( f )(t) into a time dependent low velocity part

E = {|v| � ρt p′ },
and its complementary high velocity part Ec = {|v| > ρt p′ }, where p′ > 0 and
ρ > 0 will be chosen at the end of the proof.

First consider the Boltzmann case. Let E low
l ( f )(t) be the instant energy

restricted to E . Then from (18), for t > 0, we have

Dl( f )(t) � Cργ tγ p′E low
l ( f )(t). (97)

Plugging this into the the differential inequality (16) we obtain

d

dt
El( f )(t)+ Cργ tγ p′E low

l ( f )(t) � 0.

Letting Ehigh
l ( f )(t) = El( f )(t)− E low

l ( f )(t) we have

d

dt
El( f )(t)+ Cργ tγ p′El( f )(t) � Cργ tγ p′Ehigh

l ( f )(t).

Define λ = Cργ /p, where for now p = γ p′ + 1 and p′ > 0 is arbitrary. Then

d

dt
El( f )(t)+ λpt p−1El( f )(t) � λpt p−1Ehigh

l ( f )(t).

Equivalently
d

dt

(
eλt pEl( f )(t)

)
� λpt p−1eλt pEhigh

l ( f )(t).

The integrated form is

El( f )(t) � e−λt pEl( f0)+ λpe−λt p
∫ t

0
s p−1eλs p Ehigh

l ( f )(s)ds.

Above p > 0 or equivalently γ p′ > −1 is assumed to guarantee the integral on
the right-hand side is finite. Since Ehigh

l ( f )(s) is on Ec = {|v| > ρs p′ }

Ehigh
l ( f )(s) = Ehigh

l,0 ( f )(s) � Ce− q
2 ρsϑp′

Ehigh
l,ϑ ( f )(s).
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In the last display we have used the region and

1 � exp
(q

2
(1 + |v|2) ϑ2

)
e− q

2 |v|ϑ � exp
(q

2
(1 + |v|2) ϑ2

)
e− q

2 ρsϑp′
.

Hence (17) implies

El( f )(t) � e−λt p
(

El,0( f0)+ λpEl,ϑ ( f0)

∫ t

0
s p−1eλs p− q

2 ρsϑp′
ds

)
.

The biggest exponent p that we can allow with this splitting is p = ϑp′; since also
p = γ p′ + 1 we have p′ = 1

ϑ−γ so that

p = γ

ϑ − γ
+ 1 = ϑ

ϑ − γ
.

Further choose ρ > 0 large enough so that λ = Cργ /p < q
2ρ (γ < 0) and hence

∫ ∞

0
s p−1eλs p− q

2 ρs p
ds < +∞.

This completes the proof of decay in the Boltzmann case.
For the proof of decay in the Landau case, instead of (97), we use Lemma 5 to

see that
Dl( f )(t) � Cρ2+γ t (2+γ )p′E low

l ( f )(t).

The rest of the proof is exactly the same but we find, in this case, that p = ϑ
ϑ−(2+γ ) .

Q.E.D.
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