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Abstract. The relativistic Landau-Maxwell system is among the most funda-

mental and complete models for describing the dynamics of a dilute collisional
plasma in which particles interact through Coulombic collisions and through

their self-consistent electromagnetic field. We construct the first global in time

classical solutions. Our solutions are constructed in a periodic box and near
the relativistic Maxwellian, the Jüttner solution.
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1. Collisional Plasma

A dilute hot plasma is a collection of fast moving charged particles [7]. Such
plasmas appear commonly in such important physical problems as in Nuclear fusion
and Tokamaks. Landau, in 1936, introduced the kinetic equation used to model
a dilute plasma in which particles interact through binary Coulombic collisions.
Landau did not, however, incorporate Einstein’s theory of special relativity into
his model. When particle velocities are close to the speed of light, denoted by c,
relativistic effects become important. The relativistic version of Landau’s equation
was proposed by Budker and Beliaev in 1956 [1]. It is widely accepted as the most
complete model for describing the dynamics of a dilute collisional fully ionized
plasma.

The relativistic Landau-Maxwell system is given by

∂tF+ + c
p

p+
0

· ∇xF+ + e+

(
E +

p

p+
0

×B
)
· ∇pF+ = C(F+, F+) + C(F+, F−)

∂tF− + c
p

p−0
· ∇xF− − e−

(
E +

p

p−0
×B

)
· ∇pF− = C(F−, F−) + C(F−, F+)
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with initial condition F±(0, x, p) = F0,±(x, p). Here F±(t, x, p) ≥ 0 are the spatially
periodic number density functions for ions (+) and electrons (−), at time t ≥ 0,
position x = (x1, x2, x3) ∈ T3 ≡ [−π, π]3 and momentum p = (p1, p2, p3) ∈ R3. The
constants ±e± and m± are the magnitude of the particles charges and rest masses
respectively. The energy of a particle is given by p±0 =

√
(m±c)2 + |p|2.

The l.h.s. of the relativistic Landau-Maxwell system models the transport of
the particle density functions and the r.h.s. models the effect of collisions between
particles on the transport. The heuristic derivation of this equation is

total derivative along particle trajectories = rate of change due to collisions,

where the total derivative of F± is given by Newton’s laws

ẋ = the relativistic velocity =
p√

m± + |p|2/c
,

ṗ = the Lorentzian force = ±e±
(
E +

p

p±0
×B

)
.

The collision between particles is modelled by the relativistic Landau collision op-
erator C in (1) and [1, 9] (sometimes called the relativistic Fokker-Plank-Landau
collision operator).

To completely describe a dilute plasma, the electromagnetic field E(t, x) and
B(t, x) is generated by the plasma, coupled with F±(t, x, p) through the celebrated
Maxwell system:

∂tE − c∇x ×B = −4πJ = −4π
∫

R3

{
e+

p

p+
0

F+ − e−
p

p−0
F−

}
dp,

∂tB + c∇x × E = 0,

with constraints

∇x ·B = 0, ∇x · E = 4πρ = 4π
∫

R3
{e+F+ − e−F−} dp,

and initial conditions E(0, x) = E0(x) and B(0, x) = B0(x). The charge density
and current density due to all particles are denoted ρ and J respectively.

We define relativistic four vectors as P+ = (p+
0 , p) = (p+

0 , p1, p2, p3) and Q− =
(q−0 , q). Let g+(p), h−(p) be two number density functions for two types of particles,
then the Landau collision operator is defined by

C(g+, h−)(p) ≡ ∇p ·
∫

R3
Φ(P+, Q−) {∇pg+(p)h−(q)− g+(p)∇qh−(q)} dq.(1)

The ordering of the +,− in the kernel Φ(P+, Q−) corresponds to the order of the
functions in argument of the collision operator C(g+, h−)(p). The collision kernel
is given by the 3× 3 non-negative matrix

Φ(P+, Q−) ≡ 2π
c
e+e−L+,−

(
p+

0

m+c

q−0
m−c

)−1

Λ(P+, Q−)S(P+, Q−),

where L+,− is the Couloumb logarithm for +− interactions. The Lorentz inner
product with signature (+−−−) is given by

P+ ·Q− = p+
0 q
−
0 − p · q.
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We distinguish between the standard inner product and the Lorentz inner product
of relativistic four-vectors by using capital letters P+ and Q− to denote the four-
vectors. Then, for the convenience of future analysis, we define

Λ ≡
(
P+

m+c
· Q−
m−c

)2
{(

P+

m+c
· Q−
m−c

)2

− 1

}−3/2

,

S ≡

{(
P+

m+c
· Q−
m−c

)2

− 1

}
I3 −

(
p

m+c
− q

m−c

)
⊗
(

p

m+c
− q

m−c

)
+
{(

P+

m+c
· Q−
m−c

)
− 1
}(

p

m+c
⊗ q

m−c
+

q

m−c
⊗ p

m+c

)
.

This kernel is the relativtistic counterpart of the celebrated classical (non-relativistic)
Landau collision operator.

It is well known that the collision kernel Φ is a non-negative matrix satisfying

(2)
3∑
i=1

Φij(P+, Q−)
(
qi

q−0
− pi

p+
0

)
=

3∑
j=1

Φij(P+, Q−)
(
qj

q−0
− pj

p+
0

)
= 0,

and [8, 9] ∑
i,j

Φij(P+, Q−)wiwj > 0 if w 6= d

(
p

p+
0

− q

q−0

)
∀d ∈ R.

The same is true for each other sign configuration ((+,+), (−,+), (−,−)). This
property represents the physical assumption that so-called “grazing collisions” dom-
inate, e.g. the change in “momentum of the colliding particles is perpendicular to
their relative velocity” [9] [p. 170]. This is also the key property used to derive the
conservation laws and the entropy dissipation below.

It formally follows from (2) that for number density functions g+(p), h−(p)∫
R3


 1
p
p+

0

 C(h+, g−)(p) +

 1
p
p−0

 C(g−, h+)(p)

 dp = 0.

The same property holds for other sign configurations. By integrating the relativis-
tic Landau-Maxwell system and plugging in this identity, we obtain the conservation
of mass, total momentum and total energy for solutions as

d

dt

∫
T3×R3

m+F+(t) =
d

dt

∫
T3×R3

m−F−(t) = 0,

d

dt

{∫
T3×R3

p(m+F+(t) +m−F−(t)) +
1

4π

∫
T3
E(t)×B(t)

}
= 0,

d

dt

{
1
2

∫
T3×R3

(m+p
+
0 F+(t) +m−p

−
0 F−(t)) +

1
8π

∫
T3
|E(t)|2 + |B(t)|2

}
= 0.

The entropy of the relativistic Landau-Maxwell system is defined as

H(t) ≡
∫

T3×R3
{F+(t, x, p) lnF+(t, x, p) + F−(t, x, p) lnF−(t, x, p)} dxdp.

Boltzmann’s famous H-Theorem for the relativistic Landau-Maxwell system is
d

dt
H(t) ≤ 0,
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e.g. the entropy of solutions is non-increasing as time passes.
The global relativistic Maxwellian (a.k.a. the Jüttner solution) is given by

J±(p) =
exp

(
−cp±0 /(kBT )

)
4πe±m2

±ckBTK2(m±c2/(kBT ))
,

where K2(·) is the Bessel function K2(z) ≡ z2

3

∫∞
1
e−zt(t2−1)3/2dt, T is the temper-

ature and kB is Boltzmann’s constant. From the Maxwell system and the periodic
boundary condition of E(t, x), we see that d

dt

∫
T3 B(t, x)dx ≡ 0. We thus have a

constant B̄ such that

(3)
1
|T3|

∫
T3
B(t, x)dx = B̄.

Let [·, ·] denote a column vector. We then have the following steady state solution
to the relativisitic Landau-Maxwell system

[F±(t, x, p), E(t, x), B(t, x)] = [J±, 0, B̄],

which minnimizes the entropy (H(t) = 0).
It is our purpose to study the effects of collisions in a hot plasma and to construct

global in time classical solutions for the relativistic Landau-Maxwell system with
initial data close to the relativistic Maxwellian (Theorem 1). Our construction
implies the asymptotic stability of the relativistic Maxwellian, which is suggested
by the H-Theorem.

2. Main Results

We define the standard perturbation f±(t, x, p) to J± as

F± ≡ J± +
√
J±f±.

We will plug this perturbation into the Landau-Maxwell system of equations to
derive a perturbed Landau-Maxwell system for f±(t, x, p), E(t, x) and B(t, x). The
two Landau-Maxwell equations for the perturbation f = [f+, f−] take the form{

∂t + c
p

p±0
· ∇x ± e±

(
E +

p

p±0
×B

)
· ∇p

}
f± ∓

e±c

kBT

{
E · p

p±0

}√
J± + L±f

= ± e±c

2kBT

{
E · p

p±0

}
f± + Γ±(f, f),(4)

with f(0, x, p) = f0(x, p) = [f0,+(x, p), f0,−(x, p)]. The linear operator L±f defined
in (21) and the non-linear operator Γ±(f, f) defined in (23) are derived from an
expansion of the Landau collision operator (1). The coupled Maxwell system takes
the form

∂tE − c∇x ×B = −4πJ = −4π
∫

R3

{
e+

p

p+
0

√
J+f+ − e−

p

p−0

√
J−f−

}
dp,

∂tB + c∇x × E = 0,(5)

with constraints

∇x · E = 4πρ = 4π
∫

R3

{
e+

√
J+f+ − e−

√
J−f−

}
dp, ∇x ·B = 0,(6)

with E(0, x) = E0(x), B(0, x) = B0(x). In computing the charge ρ, we have used
the normalization

∫
R3 J±(p)dp = 1

e±
.
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Notation: For notational simplicity, we shall use 〈·, ·〉 to denote the standard L2

inner product in R3 and (·, ·) to denote the standard L2 inner product in T3 ×R3.
We define the collision frequency as the 3× 3 matrix

(7) σij±,∓(p) ≡
∫

Φij(P±, Q∓)J∓(q)dq.

These four weights (corresponding to signatures (+,+), (+,−), (−,+), (−,−)) are
used to measure the dissipation of the relativistic Landau collision term. Unless
otherwise stated g = [g+, g−] and h = [h+, h−] are functions which map {t ≥
0} × T3 × R3 → R2. We define

〈g, h〉σ ≡
∫

R3

{(
σij+,+ + σij+,−

)
∂pj

g+∂pi
h+ +

(
σij−,− + σij−,+

)
∂pj

g−∂pi
h−

}
dp,

+
1
4

∫
R3

(
σij+,+ + σij+,−

) pi

p+
0

pj

p+
0

g+h+dp(8)

+
1
4

∫
R3

(
σij−,− + σij−,+

) pi

p−0

pj

p−0
g−h−dp,

where in (8) and the rest of the paper we use the Einstein convention of implicitly
summing over i, j ∈ {1, 2, 3} (unless otherwise stated). This complicated inner
product is motivated by following splitting, which is a crucial element of the energy
method used in this paper (Lemma 6 and Lemma 8):

〈Lg, h〉 = 〈[L+g, L−g], h〉 = 〈g, h〉σ + a “compact” term.

We will also use the corresponding L2 norms

|g|2σ ≡ 〈g, g〉σ, ‖g‖2σ ≡ (g, g)σ ≡
∫

T3
〈g, g〉σdx.

We use | · |2 to denote the L2 norm in R3 and ‖ · ‖ to denote the L2 norm in either
T3 × R3 or T3 (depending on whether the function depends on both (x, p) or only
on x). Let the multi-indices γ and β be γ = [γ0, γ1, γ2, γ3], β = [β1, β2, β3]. We
use the following notation for a high order derivative

∂γβ ≡ ∂
γ0

t ∂γ
1

x1
∂γ

2

x2
∂γ

3

x3
∂β

1

p1 ∂
β2

p2 ∂
β3

p3 .

If each component of β is not greater than that of β̄’s, we denote by β ≤ β̄; β < β̄

means β ≤ β̄, and |β| < |β̄|. We also denote
(
β
β̄

)
by C β̄β . Let

|||f |||2(t) ≡
∑

|γ|+|β|≤N

||∂γβf(t)||2,

|||f |||2σ(t) ≡
∑

|γ|+|β|≤N

||∂γβf(t)||2σ,

|||[E,B]|||2(t) ≡
∑
|γ|≤N

||[∂γE(t), ∂γB(t)]||2.

It is important to note that our norms include the temporal derivatives. For a
function independent of t, we use the same notation but we drop the (t). The
above norms and their associated spaces are used throughout the paper for arbitrary
functions.
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We further define the high order energy norm for a solution f(t, x, p), E(t, x)
and B(t, x) to the relativistic Landau-Maxwell system (4) and (5) as

(9) E(t) ≡ 1
2
|||f |||2(t) + |||[E,B]|||2(t) +

∫ t

0

|||f |||2σ(s)ds.

Given initial datum [f0(x, p), E0(x), B0(x)], we define

E(0) =
1
2
|||f0|||2 + |||[E0, B0]|||2,

where the temporal derivatives of [f0, E0, B0] are defined naturally through equa-
tions (4) and (5). The high order energy norm is consistent at t = 0 for a smooth
solution and E(t) is continuous (Theorem 6).

Assume that initially [F0, E0,B0] has the same mass, total momentum and total
energy as the steady state [J±, 0, B̄], then we can rewrite the conservation laws in
terms of the perturbation [f,E,B]:∫

T3×R3
m+f+(t)

√
J+ ≡

∫
T3×R3

m−f−(t)
√
J− ≡ 0,(10) ∫

T3×R3
p
{
m+f+(t)

√
J+ +m−f−(t)

√
J−

}
≡ − 1

4π

∫
T3
E(t)×B(t),(11)

∫
T3×R3

m+p
+
0 f+(t)

√
J+ +m−p

−
0 f−(t)

√
J− ≡ −

1
8π

∫
T3
|E(t)|2 + |B(t)− B̄|2.

(12)

We have used (3) for the normalized energy conservation (12).
The effect of this restriction is to guarantee that a solution can only converge

to the specific relativistic Maxwellian that we perturb away from (if the solution
converges to a relativistic Maxwellian). The value of the steady state B̄ is also
defined by the initial conditions (3).

We are now ready to state our main results:

Theorem 1. Fix N , the total number of derivatives in (9), with N ≥ 4. Assume
that [f0, E0, B0] satisfies the conservation laws (10), (11), (12) and the constraint
(6) initially. Let

F0,±(x, p) = J± +
√
J±f0,±(x, p) ≥ 0.

There exist C0 > 0 and M > 0 such that if

E(0) ≤M,

then there exists a unique global solution [f(t, x, p), E(t, x), B(t, x)] to the perturbed
Landau-Maxwell system (4), (5) with (6). Moreover,

F±(t, x, p) = J± +
√
J±f±(t, x, p) ≥ 0

solves the relativistic Landau-Maxwell system and

sup
0≤s≤∞

E(s) ≤ C0E(0).

Remarks:
• These solutions are C1, and in fact Ck, for N large enough.
• Since

∫∞
0
|||f |||2σ(t)dt < +∞, f(t, x, p) gains one momentum derivative over

it’s initial data and |||f |||2σ(t)→ 0 in a certain sense.
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• Further, Lemma 5 together with Lemma 13 imply that∑
|γ|≤N−1

{
||∂γE(t)||+ ||∂γ{B(t)− B̄}||

}
≤ C

∑
|γ|≤N

||∂γf(t)||σ.

Therefore, except for the highest order derivatives, the field also converges.
• It is an interesting open question to determine the asymptotic behavior of

the highest order derivatives of the electromagnetic field.
Recently, global in time solutions to the related classical Vlasov-Maxwell-Boltzmann

equation were constructed by the second author in [6]. The Boltzmann equation is
a widely accepted model for binary interactions in a dilute gas, however it fails to
hold for a dilute plasma in which grazing collisions dominate.

The following classical Landau collision operator (with normalized constants)
was designed to model such a plasma:

Ccl(F−, F+) ≡ ∇v ·
{∫

R3
φ(v − v′) {∇vF−(v)F+(v′)− F−(v)∇v′F+(v′)} dv′

}
.

The non-negative 3× 3 matrix is

(13) φij(v) =
{
δij −

vivj
|v|2

}
1
|v|
.

Unfortunately, because of the crucial hard sphere assumption, the construction
in [6] fails to apply to a non-relativistic Coulombic plasma interacting with it’s
electromagnetic field. The key problem is that the classical Landau collision op-
erator, which was studied in detail in [5], offers weak dissipation of the form∫

R3(1+ |v|)−1|f |2dv. The global existence argument in Section 6 (from [6]) does not
work because of this weak dissipation. Further, the unbounded velocity v, which
is inconsistent with Einstein’s theory of special relativity, in particular makes it
impossible to control a nonlinear term like {E · v} f± in the classical theory.

On the other hand, in the relativistic case our key observation is that the corre-
sponding nonlinear term c

{
E · p/p±0

}
f± can be easily controlled by the dissipation

because |cp/p±0 | ≤ c and the dissipation in the relativisitc Landau operator is∫
R3 |f |2dp (Lemma 5 and Lemou [8]).

However, it is well-known that the relativity effect can produce severe mathemat-
ical difficulties. Even for the related pure relativistic Boltzmann equation, global
smooth solutions were only constructed in [3, 4].

The first new difficulty is due to the complexity of the relativistic Landau collision
kernel Φ(P+, Q−). Since

P+

m+c
· Q−
m−c

− 1 ∼ 1
2c

∣∣∣∣ pm+
− q

m−

∣∣∣∣2 when
P+

m+c
≈ Q−
m−c

,

the kernel in (1) has a first order singularity. Hence it can not absorb many deriva-
tives in high order estimates (Lemma 7 and Theorem 4). The same issue exists for
the classical Landau kernel φ(v − v′), but the obvious symmetry makes it easy to
express v derivatives of φ in terms of v′ derivatives. It is then possible to integrate
by parts and move derivatives off the singular kernel in the estimates of high order
derivatives. On the contrary, no apparent symmetry exists beween p and q in the
relativistic case. We overcome this severe difficulty with the splitting

∂pj
Φij(P+, Q−) = −q

−
0

p+
0

∂qj
Φij(P+, Q−) +

(
∂pj

+
q−0
p+

0

∂qj

)
Φij(P+, Q−),
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where the operator
(
∂pj

+ q−0
p+0
∂qj

)
does not increase the order of the singularity

mainly because (
∂pj

+
q−0
p+

0

∂qj

)
P+ ·Q− = 0.

This splitting is crucial for performing the integration by parts in all of our estimates
(Lemma 2 and Theorem 3). We believe that such an integration by parts technique
should shed new light on the study of the relativistic Boltzmann equation.

As in [5, 6], another key point in our construction is to show that the linearized
collision operator L is in fact coercive for solutions of small amplitude to the full
nonlinear system (4), (5) and (6):

Theorem 2. Let [f(t, x, p), E(t, x), B(t, x)] be a classical solution to (4) and (5)
satisfying (6), (10), (11) and (12). There exists M0, δ0 = δ0(M0) > 0 such that if

(14)
∑
|γ|≤N

{
1
2
||∂γf(t)||2 + ||∂γE(t)||2 + ||∂γB(t)||2

}
≤M0,

then ∑
|γ|≤N

(L∂γf(t), ∂γf(t)) ≥ δ0
∑
|γ|≤N

||∂γf(t)||2σ.

Theorem 2 is proven through a careful study of the macroscopic equations (98)
- (102). These macroscopic equations come from a careful study of solutions f to
the perturbed relativistic Landau-Maxwell system (4), (5) with (6) projected onto
the null space N of the linearized collision operator L = [L+, L−] defined in (21).

As expected from the H-theorem, L is non-negative and for every fixed (t, x) the
null space of L is given by the six dimensional space (1 ≤ i ≤ 3)

(15) N ≡ span{[
√
J+, 0], [0,

√
J−], [pi

√
J+, pi

√
J−], [p+

0

√
J+, p

−
0

√
J−]}.

This is shown in Lemma 1. We define the orthogonal projection from L2(R3
p) onto

the null space N by P. We then decompose f(t, x, p) as

f = Pf + {I−P}f.

We call Pf = [P+f,P−f ] ∈ R2 the hydrodynamic part of f and {I−P}f =
[{I−P}+f, {I−P}−f ] is called the microscopic part. By separating its linear and
nonlinear part, and using L±{Pf} = 0, we can express the hydrodynamic part of
f through the microscopic part up to a higher order term h(f):

(16)
{
∂t + c

p

p±0
· ∇x

}
P±f ∓

e±c

kBT

{
E · p

p±0

}√
J± = l±({I−P}f) + h±(f),

where

l±({I−P}f) ≡ −
{
∂t +

p

p±0
· ∇x

}
{I−P}±f + L± {{I−P}f} ,(17)

h±(f) ≡ ∓e±
(
E +

p

p±0
×B

)
· ∇pf±

± e±c

2kBT

{
E · p

p±0

}
f± + Γ±(f, f).(18)
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We further expand P±f as a linear combination of the basis in (15)

(19) P±f ≡

a±(t, x) +
3∑
j=1

bj(t, x)pj + c(t, x)p±0

√J±.
A precise definition of these coefficients will be given in (94). The relativistic system
of macroscopic equations (98) - (102) are obtained by plugging (19) into (16).

These macroscopic equations for the coefficients in (19) enable us to show that
there exists a constant C > 0 such that solutions to (4) which satisfy the smallness
constraint (14) (for M0 > 0 small enough) will also satisfy

(20)
∑
|γ|≤N

{||∂γa±||+ ||∂γb||+ ||∂γc||} ≤ C(M0)
∑
|γ|≤N

||{I−P}∂γf(t)||σ.

This implies Theorem 2 since ‖Pf‖σ is trivially bounded above by the l.h.s. (Propo-
sition 2) and L is coercive with respect to {I−P}∂γf(t) (Lemma 8).

Since our smallness assumption (14) involves no momentum derivatives, in prov-
ing (20) the presence of momentum derivatives in the collision operator (1) causes
another serious mathematical difficulty. We develop a new estimate (Theorem 5)
which involves purely spatial derivatives of the linear term (21) and the nonlinear
term (23) to overcome this difficulty.

To the best of the authors’ knowledge, until now there were no known solutions
for the relativistic Landau-Maxwell system. However in 2000, Lemou [8] studied
the linearized relativistic Landau equation with no electromagnetic field. We will
use one of his findings (Lemma 5) in the present work.

For the classical Landau equation, the 1990’s have seen the first solutions. In
1994, Zhan [10] proved local existence and uniqueness of classical solutions to the
Landau-Poisson equation (B ≡ 0) with Coulomb potential and a smallness as-
sumption on the initial data at infinity. In the same year, Zhan [11] proved local
existence of weak solutions to the Landau-Maxwell equation with Coulomb poten-
tial and large initial data.

On the other hand, in the absence of an electromagnetic field we have the fol-
lowing results. In 2000, Desvillettes and Villani [2] proved global existence and
uniqueness of classical solutions for the spatially homogeneous Landau equation for
hard potentials and a large class of initial data. In 2002, the second author [5]
constructed global in time classical solutions near Maxwellian for a general Landau
equation (both hard and soft potentials) in a periodic box based on a nonlinear
energy method.

Our paper is organized as follows. In section 3 we establish linear and nonlinear
estimates for the relativistic Landau collision operator. In section 4 we construct
local in time solutions to the relativistic Landau-Maxwell system. In section 5 we
prove Theorem 2. And in section 6 we extend the solutions to T =∞.

Remark 1. It turns out that the presence of the physical constants do not cause
essential mathematical difficulties. Therefore, for notational simplicity, after the
proof of Lemma 1 we will normalize all constants in the relativistic Landau-Maxwell
system (4), (5) with (6) and in all related quantities to be one.
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3. The Relativistic Landau Operator

Our main results in this section include the crucial Theorem 3, which allows us
to express p derivatives of Φ(P,Q) in terms of q derivatives of Φ(P,Q). This is vital
for establishing the estimates found at the end of the section (Lemma 7, Theorem 4
and Theorem 5). Other important results include the equivalence of the norm | · |σ
with the standard Sobolev space norm for H1 (Lemma 5) and a weak formulation
of compactness for K which is enough to prove coercivity for L away from the null
space N (Lemma 8). We also compute the sum of second order derivatives of the
Landau kernel (Lemma 3).

We first introduce some notation. Using (2), we observe that quadratic collision
operator (1) satisfies

C(J+, J+) = C(J+, J−) = C(J−, J+) = C(J−, J−) = 0.

Therefore, the linearized collision operator Lg is defined by

(21) Lg = [L+g, L−g], L±g ≡ −A±g −K±g,

where

A+g ≡ J
−1/2
+ C(

√
J+g+, J+) + J

−1/2
+ C(

√
J+g+, J−),

A−g ≡ J
−1/2
− C(

√
J−g−, J−) + J

−1/2
− C(

√
J−g−, J+),

K+g ≡ J
−1/2
+ C(J+,

√
J+g+) + J

−1/2
+ C(J+,

√
J−g−),(22)

K−g ≡ J
−1/2
− C(J−,

√
J−g−) + J

−1/2
− C(J−,

√
J+g+).

And the nonlinear part of the collision operator (1) is defined by

Γ(g, h) = [Γ+(g, h),Γ−(g, h)],

where

Γ+(g, h) ≡ J
−1/2
+ C(

√
J+g+,

√
J+h+) + J

−1/2
+ C(

√
J+g+,

√
J−h−),(23)

Γ−(g, h) ≡ J
−1/2
− C(

√
J−g−,

√
J−h−) + J

−1/2
− C(

√
J−g−,

√
J+h+).

We will next derive the null space (15) of the linear operator in the presence of all
the physical constants.

Lemma 1. 〈Lg, h〉 = 〈Lh, g〉, 〈Lg, g〉 ≥ 0. And Lg = 0 if and only if g = Pg.

Proof. From (21) we split 〈Lg, h〉, with Lg = [L+g, L−g], as

−
∫

R3

h+√
J+

{C(
√
J+g+, J+) + C(J+,

√
J+g+)}dp

−
∫

R3

{
h+√
J+

{C(
√
J+g+, J−) + C(J+,

√
J−g−)}

}
dp(24)

−
∫

R3

{
h−√
J−
{C(
√
J−g−, J+) + C(J−,

√
J+g+)}

}
dp

−
∫

R3

h−√
J−
{C(
√
J−g−, J−) + C(J−,

√
J−g−)}dp.
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We use the fact that ∂qi
J−(q) = − c

kBT
qi

q−0
J−(q) and ∂pi

J
1/2
+ (p) = − c

kBT
pi

p+0
J+(p)

as well as the null space of Φ in (2) to show that

C(J1/2
+ g+, J−)

= ∂pi

∫
R3

Φij(P+, Q−)J−(q)J1/2
+ (p)

{(
qi

q−0
− pi

2p+
0

)
g+(p) + ∂pj

g+(p)
}
dq

= ∂pi

∫
R3

Φij(P+, Q−)J−(q)J1/2
+ (p)

{
pi

2p+
0

g+(p) + ∂pj
g+(p)

}
dq

= ∂pi

∫
R3

Φij(P+, Q−)J−(q)J+(p)∂pj
(J−1/2

+ g+(p))dq

And similarly

C(J−, J1/2
+ g+)

= −∂pi

∫
R3

Φij(P−, Q+)J−(p)J1/2
+ (q)

{(
pi

p−0
− qi

2q+
0

)
g+(q) + ∂qjg+(q)

}
dq

= −∂pi

∫
R3

Φij(P−, Q+)J−(p)J1/2
+ (q)

{
qi

2q+
0

g+(q) + ∂qj
g+(q)

}
dq

= −∂pi

∫
R3

Φij(P−, Q+)J−(p)J+(q)∂qj
(J−1/2

+ g+(q))dq.(25)

Similar expressions hold by exchanging the + terms and the − terms in the appro-
priate places. For the first term in (24), we integrate by parts over p variables on
the first line, then relabel the variables switching p and q on the second line and
finally adding them up on the last line to obtain

=
∫∫

Φij(P+, Q+)J+(p)J+(q)∂pi(h+J
−1/2
+ (p))

×{∂pj
(g+J

−1/2
+ (p))− ∂qj

(g+J
−1/2
+ (q))}dpdq

=
∫∫

Φij(P+, Q+)J+(p)J+(q)∂qi(h+J
−1/2
+ (q))

×{∂qj
(g+J

−1/2
+ (q))− ∂pj

(g+J
−1/2
+ (p))}dpdq

=
1
2

∫∫
Φij(P+, Q+)J+(p)J+(q){∂pi

(h+J
−1/2
+ (p))− ∂qi

(h+J
−1/2
+ (q))}

×{∂pj (g+J
−1/2
+ (p))− ∂qj (g+J

−1/2
+ (q))}dpdq.

By (2) the first term in (24) is symmetric and ≥ 0 if h = g. The fourth term can be
treated similarly (with + replaced by − everywhere. We combine the second and
third terms in (24); again we integrate by parts over p variables to compute

=
∫∫

Φij(P+, Q−)J+(p)J−(q)∂pi
(h+J

−1/2
+ (p))

×{∂pj
(g+J

−1/2
+ (p))− ∂qj

(g−J
−1/2
− (q))}dpdq

+
∫∫

Φij(P−, Q+)J−(p)J+(q)∂pi(h−J
−1/2
− (p))

×{∂pj
(g−J

−1/2
− (p))− ∂qj

(g+J
−1/2
+ (q))}dpdq.
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We switch the role of p and q in the second term to obtain

=
∫∫

Φij(P+, Q−)J+(p)J−(q){∂pi
(h+J

−1/2
+ (p))− ∂qi

(h−J
−1/2
− (q))}

×{∂pj
(g+J

−1/2
+ (p))− ∂qj

(g−J
−1/2
− (q))}dpdq.

Again by (2) this piece of the operator is symmetric and ≥ 0 if g = h. We therefore
conclude that L is a non-negative symmetric operator.

We will now determine the null space (15) of the linear operator. Assume Lg = 0.
From 〈Lg, g〉 = 0 we deduce, by (2), that there are scalar functions ζl(p, q) (l = ±)
such that

∂pi
(glJ

−1/2
l (p))− ∂qi

(glJ
−1/2
l (q)) ≡ ζl(p, q)

(
pi
pl0
− qi
ql0

)
, i ∈ {1, 2, 3}.

Setting q = 0, ∂pi
(glJ

−1/2
l (p)) = ζl(p, 0) pi

pl
0

+bli. By replacing p by q and subtracting
we obtain

∂pi
(glJ

−1/2
l (p))− ∂qi

(glJ
−1/2
l (q)) = ζl(p, 0)

pi
pl0
− ζl(q, 0)

qi
ql0

= ζl(p, 0)
(
pi
pl0
− qi
ql0

)
+ (ζl(p, 0)− ζl(q, 0))

qi
ql0
.

We deduce, again by (2), that ζl(p, 0)− ζl(q, 0) = 0 and therefore that ζl(p, 0) ≡ cl
(a constant). We integrate ∂pi

(glJ
−1/2
l (p)) = cl

pi

pl
0

+ bli to obtain

gl = {agl +
3∑
i=1

bglipj + cgl p
l
0}J

1/2
l .

Here agl , b
g
lj and cgl are constants with respect to p (but could be functions of t and

x). Moreover, we deduce from the middle terms in (24) as well as (2) that

∂pi
(g+J

−1/2
+ (p))− ∂qi

(g−J
−1/2
− (q)) ≡ ζ̃(p, q)

(
pi

p+
0

− qi

q−0

)
.

Therefore bg+i − b
g
−i + cg+

pi

p+0
− cg−

qi

q−0
= ζ̃(p, q)

(
pi

p0
− qi

q0

)
. We conclude

bg+i ≡ bg−i, i = 1, 2, 3;

cg+ ≡ cg−.

That means g(t, x, p) ∈ N as in (15), so that g = Pg. Conversely, L{Pg} = 0 by a
direct calculation. �

For notational simplicity, as in Remark 1, we will normalize all the constants to
be one. Accordingly, we write p0 =

√
1 + |p|2, P = (p0, p), and the collision kernel

Φ(P,Q) takes the form

Φ(P,Q) ≡ Λ(P,Q)
p0q0

S(P,Q),(26)

where

Λ ≡ (P ·Q)2
{

(P ·Q)2 − 1
}−3/2

,

S ≡
{

(P ·Q)2 − 1
}
I3 − (p− q)⊗ (p− q) + {(P ·Q)− 1} (p⊗ q + q ⊗ p) .
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We normalize the relativistic Maxwellian as

J(p) ≡ J+(p) = J−(p) = e−p0 .

We further normalize the collision freqency

(27) σij±,∓(p) = σij(p) =
∫

Φij(P,Q)J(q)dq,

and the inner product 〈·, ·〉σ takes the form

〈g, h〉σ ≡ 2
∫

R3
σij
{
∂pjg+∂pih+ + ∂pjg−∂pih−

}
dp,

+
1
2

∫
R3
σij

pi
p0

pj
p0
{g+h+dp+ g−h−} dp.(28)

The norms are, as before, naturally built from this normalized inner product.
The normalized vector-valued Landau-Maxwell equation for the perturbation f

in (4) now takes the form{
∂t +

p

p0
· ∇x + ξ

(
E +

p

p0
×B

)
· ∇p

}
f −

{
E · p

p0

}√
Jξ1 + Lf

=
ξ

2

{
E · p

p0

}
f + Γ(f, f).(29)

with f(0, x, v) = f0(x, v), ξ1 = [1,−1], and the 2 × 2 matrix ξ is diag(1,−1).
Further, the normalized Maxwell system in (5) and (6) takes the form

∂tE −∇x ×B = −J = −
∫

R3

p

p0

√
J(f+ − f−)dp, ∂tB +∇x × E = 0,(30)

∇x · E = ρ =
∫

R3

√
J(f+ − f−)dp, ∇x ·B = 0,(31)

with E(0, x) = E0(x), B(0, x) = B0(x).
We have a basic (but useful) inequality taken from Glassey & Strauss [3].

Proposition 1. Let p, q ∈ R3 with P = (p0, p) and Q = (q0, q) then

(32)
|p− q|2 + |p× q|2

2p0q0
≤ P ·Q− 1 ≤ 1

2
|p− q|2.

This will inequality will be used many times for estimating high order derivatives
of the the collision kernel.

Notice that(
∂pi

+
q0

p0
∂qi

)
P ·Q =

(
∂pi

+
q0

p0
∂qi

)
(p0q0 − p · q)

=
pi
p0
q0 − qi +

q0

p0

(
qi
q0
p0 − pi

)
= 0.

This is the key observation which allows us do analysis on the relativistic Landau
Operator (Lemma 2). We define the following relativistic differential operator

(33) Θα(p, q) ≡
(
∂p3 +

q0

p0
∂q3

)α3 (
∂p2 +

q0

p0
∂q2

)α2 (
∂p1 +

q0

p0
∂q1

)α1

.

Unless otherwise stated, we omit the p, q dependence and write Θα = Θα(p, q).
Note that the three terms in Θα do not commute (and we choose this order for no
special reason).
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We will use the following splitting many times in the rest of this section,

(34) A = {|p− q|+ |p× q| ≥ [|p|+ 1]/2}, B = {|p− q|+ |p× q| ≤ [|p|+ 1]/2}.

The set A is designed to be away from the first order singularity in collision kernel
Φ(P,Q) (Proposition 1). And the set B contains a Φ(P,Q) singularity ((26) and
(32)) but we will exploit the fact that we can compare the size of p and q. We now
develop crucial estimates for ΘαΦ(P,Q):

Lemma 2. For any multi-index α, the Lorentz inner product of P and Q is in the
null space of Θα,

Θα(P ·Q) = 0.
Further, recalling (26), for p and q on the set A we have the estimate

(35) |Θα(p, q)Φ(P,Q)| ≤ Cp−|α|0 q6
0 .

And on B,

(36)
1
6
q0 ≤ p0 ≤ 6q0.

Using this inequality, we have the following estimate on B

(37) |Θα(p, q)Φ(P,Q)| ≤ Cq7
0p
−|α|
0 |p− q|−1.

Proof. Let ei (i = 1, 2, 3) be an element of the standard basis in R3. We have seen
that Θei(P ·Q) = 0. And the general case follows from a simple induction over |α|.

By (26) and (33), we can now write

Θα(p, q)Φij(P,Q) = Λ(P,Q)Θα(p, q)
(
Sij(p, q)
p0q0

)
,

where

Θα

(
Sij(p, q)
p0q0

)
=

{
(P ·Q)2 − 1

}
Θα {δij/(p0q0)}

+(P ·Q− 1)Θα {(piqj + pjqi)/(p0q0)}(38)
−Θα {(pi − qi)(pj − qj)/(p0q0)} .

We will break up this expression and estimate the different pieces.
Using (33), the following estimates are straight forward

|Θα {δij/(p0q0)}| ≤ Cq−1
0 p

−1−|α|
0 ,(39)

|Θα {(piqj + pjqi)/(p0q0)}| ≤ Cp
−|α|
0 .(40)

On the other hand, we claim that

(41) |Θα {(pi − qi)(pj − qj)/(p0q0)}| ≤ C |p− q|
2

p0q0
p
−|α|
0 .

This last estimate is not so trivial because only a lower order estimate of |p− q| is
expected after applying even a first order derivative like Θei

. The key observation
is that (

∂pi +
q0

p0
∂qi

)
(pi − qi)(pj − qj) =

(
1− q0

p0

)
(pj − qj),

and the r.h.s. is again second order. Therefore the operator Θα can maintain the
order of the cancellation.
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Proof of claim: To prove (41), it is sufficient to show that for any multi-index α

and any i, j, k, l ∈ {1, 2, 3} there exists a smooth function Gα,ijkl (p, q) satisfying

(42) Θα {(pi − qi)(pj − qj)/(p0q0)} =
3∑

k,l=1

(pk − qk)(pl − ql)Gα,ijkl (p, q)

as well as the decay

(43)
∣∣∣∂ν1∂qν2Gα,ijkl (p, q)

∣∣∣ ≤ Cq−1−|ν2|
0 p

−1−|α|−|ν1|
0 ,

which holds for any multi-indices ν1, ν2. We prove (42) with (43) by a simple
induction over |α|.

If |α| = 0, we define

G0,ij
kl (p, q) =

δkiδlj
q0p0

.

The decay (43) for G0,ij
kl (p, q) is straight forward to check. And (42) holds trivially

for |α| = 0.
Assume the (42) with (43) holds for |α| ≤ n. To conclude the proof, let |α′| =

n+ 1 and write Θα′ = ΘemΘα for some multi-index α with

m = max{j : (α′)j > 0}.

This specification of m is needed because of our chosen ordering of the three differ-
ential operators in (33), which don’t commute. Recalling (33),

Θem(pk − qk) = δkm

(
1− q0

p0

)
.

From the induction assumption and the last display, we have

Θα′ {(pi − qi)(pj − qj)/(p0q0)}

= Θem

3∑
k,l=1

(pk − qk)(pl − ql)Gα,ijkl (p, q),

=
(

1− q0

p0

) 3∑
k=1

(pk − qk)
{
Gα,ijmk (p, q) +Gα,ijkm (p, q)

}
+

3∑
k,l=1

(pk − qk)(pl − ql)Θem
Gα,ijkl (p, q).

We compute

1− q0

p0
=
p0 − q0

p0
=

p2
0 − q2

0

p0(p0 + q0)
=

(p− q) · (p+ q)
p0(p0 + q0)

=
∑
l(pl − ql)(pl + ql)
p0(p0 + q0)

.

We plug this display into the one above it to obtain (42) for α′ with the new
coefficients

Gα
′,ij
kl (p, q) ≡ Θem

Gα,ijkl (p, q) +

{
Gα,ijmk (p, q) +Gα,ijkm (p, q)

}
(pl + ql)

p0(p0 + q0)
.

We check that Gα
′,ij
kl (p, q) satisfies (43) using the Leibnitz differentiation formula

as well as the induction assumption (43). This establishes the claim (41).
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With the estimates (39), (40) and (41) in hand, we return to establishing (35)
and (37). We plug the estimates (39), (40) and (41) into ΘαΦij(P,Q) from (38) to
obtain that∣∣ΘαΦij(P,Q)

∣∣ ≤ Cp
−|α|
0 (P ·Q)2

{
(P ·Q)2 − 1

}−3/2 (P ·Q)2 − 1
p0q0

+Cp−|α|0 (P ·Q)2
{

(P ·Q)2 − 1
}−3/2

(P ·Q− 1)(44)

+Cp−|α|0 (P ·Q)2
{

(P ·Q)2 − 1
}−3/2 |p− q|2

p0q0
.

We will use this estimate twice to get (35) and (37).
We first establish (35). On the set A we have

2|p− q|2 + 2|p× q|2 ≥ (|p− q|+ |p× q|)2 ≥ 1
4
p2

0 +
|p|
2
≥ 1

4
p2

0.

From (32) and the last display we have

P ·Q+ 1 ≥ P ·Q− 1 ≥ 1
16
p0

q0
.

From the Cauchy-Schwartz inequality we also have

0 ≤ P ·Q− 1 ≤ P ·Q ≤ p0q0 + |p · q| ≤ 2p0q0.

We plug these last two inequalities (one at a time) into (44) to obtain

∣∣ΘαΦij(p, q)
∣∣ ≤ C(P ·Q)2

{
(P ·Q)2 − 1

}−3/2
p
−|α|
0

{
p2

0q
2
0 + p2

0q
2
0 + p2

0q
2
0

p0q0

}
≤ C(p0q0)2

{
(P ·Q)2 − 1

}−3/2
p
−|α|
0 p0q0

≤ C(p0q0)3 {P ·Q− 1}−3
p
−|α|
0

≤ C(p0q0)3

(
p0

q0

)−3

p
−|α|
0 .

We move on to establishing (36). If |p| ≤ 1, then p0 ≤ 2 ≤ 2q0. Assume |p| ≥ 1,
using B we compute

q0 ≥ |q| ≥ |p| − |p− q| ≥
1
2
|p| − 1

2
≥ 1

4
p0 −

1
2
.

Therefore, p0 ≤ 6q0 on B. For the other half of (36),

q0 ≤ p0 + |p− q| ≤ 3
2
p0 +

1
2
≤ 2p0.

We move on to establishing (37). On the set B we have a first order singularity.
Also (32) tells us

|p− q|2

2p0q0
≤ P ·Q− 1 ≤ 1

2
|p− q|2.
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We plug this into (44) to observe that on B we have

∣∣ΘαΦij(p, q)
∣∣ ≤ C(P ·Q)2

{
(P ·Q)2 − 1

}−3/2
p
−|α|
0

×
{

(P ·Q+ 1)|p− q|2 + |p− q|2 + |p− q|2q0p0

q0p0

}
≤ C(P ·Q)2

{
(P ·Q)2 − 1

}−3/2
p
−|α|
0 |p− q|2

≤ C(p0q0)2
{

(P ·Q)2 − 1
}−3/2

p
−|α|
0 |p− q|2

≤ C(p0q0)2(p0q0)3/2|p− q|−1 {P ·Q+ 1}−3/2
p
−|α|
0

≤ C(p0q0)7/2|p− q|−1p
−|α|
0 .

We achieve the last inequality because (32) says P ·Q ≥ 1. �

Next, let µ(p, q) be an arbitrary smooth scalar function which decay’s rapidly at
infinity. We consider the following integral

∫
R3

Φij(P,Q)J1/2(q)µ(p, q)dq.

Both the linear term L and the nonlinear term Γ are of this form (Lemma 6). We
develop a new integration by parts technique.

Theorem 3. Given |β| > 0, we have

∂β

∫
R3

Φij(P,Q)J1/2(q)µ(p, q)dq

=
∑

β1+β2+β3≤β

∫
R3

Θβ1Φij(P,Q)J1/2(q)∂qβ2
∂β3µ(p, q)ϕββ1,β2,β3

(p, q)dq(45)

where ϕββ1,β2,β3
(p, q) is a smooth function which satisfies

(46)
∣∣∣∂qν1∂ν2ϕββ1,β2,β3

(p, q)
∣∣∣ ≤ Cq|β|−|ν1|0 p

|β1|+|β3|−|β|−|ν2|
0 ,

for all multi-indices ν1 and ν2.

Proof. We prove (45) by an induction over the number of derivatives |β|. Assume
β = ei (i = 1, 2, 3). We write

(47) ∂pi = − q0

p0
∂qi

+
(
∂pi

+
q0

p0
∂qi

)
= − q0

p0
∂qi

+ Θei
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Instead of hitting Φij(P,Q) with ∂pi
, we apply the r.h.s. term above and integrate

by parts over − q0
p0
∂qi to obtain

∂pi

∫
R3

Φij(P,Q)J1/2(q)µ(p, q)dq

=
∫

R3
Φij(P,Q)J1/2(q)∂pi

µ(p, q)dq

+
∫

R3
Φij(P,Q)J1/2(q)

q0

p0
∂qi
µ(p, q)dq

+
∫

R3
Φij(P,Q)J1/2(q)

(
qi
q0p0

− qi
2p0

)
µ(p, q)dq

+
∫

R3
ΘeiΦ

ij(P,Q)J1/2(q)µ(p, q)dq.

We can write the above in the form (45) with the coefficients given by
(48)
φei

0,0,0(p, q) =
qi
q0p0

− qi
2p0

, φei
ei,0,0

(p, q) = 1, φei
0,ei,0

(p, q) =
q0

p0
, φei

0,0,ei
(p, q) = 1.

And define the rest of the coefficients to be zero. Note that these coefficients satisfy
the decay (46). This establishes the first step in the induction.

Assume the result holds for all |β| ≤ n. Fix an arbitrary β′ such that |β′| = n+1
and write ∂β′ = ∂pm∂β for some multi-index β and

m = max{j : (β′)j > 0}.

This specification of m is needed because of our chosen ordering of the three differ-
ential operators in (33), which don’t commute.

By the induction assumption

∂β′

∫
R3

Φij(P,Q)J1/2(q)µ(p, q)dq

=
∑

β̄1+β̄2+β̄3≤β

∂pm

∫
R3

Θβ̄1
Φij(P,Q)J1/2(q)∂q

β̄2
∂β̄3

µ(p, q)ϕβ
β̄1,β̄2,β̄3

(p, q)dq

We approach applying the last derivative the same as the |β| = 1 case above. We
obtain

=
∑∫

R3
Θβ̄1

Φij(P,Q)J1/2(q)ϕβ
β̄1,β̄2,β̄3

(p, q)∂pm∂
q

β̄2
∂β̄3

µ(p, q)dq(49)

+
∑∫

R3
Θβ̄1

Φij(P,Q)J1/2(q)ϕβ
β̄1,β̄2,β̄3

(p, q)
q0

p0
∂qm

∂q
β̄2
∂β̄3

µ(p, q)dq(50)

+
∑∫

R3
ΘemΘβ̄1

Φij(P,Q)J1/2(q)∂q
β̄2
∂β̄3

µ(p, q)ϕβ
β̄1,β̄2,β̄3

(p, q)dq(51)

+
∑∫

R3
Θβ̄1

Φij(P,Q)J1/2(q)∂q
β̄2
∂β̄3

µ(p, q)

×
(
∂pm

+
q0

p0
∂qm

+
qm
p0q0

− qm
2p0

)
ϕβ
β̄1,β̄2,β̄3

(p, q)dq,(52)
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where the unspecified summations above are over β̄1 + β̄2 + β̄3 ≤ β. We collect all
the terms above with the same order of differentiation to obtain

=
∑

β1+β2+β3≤β′

∫
R3

Θβ1Φij(P,Q)J1/2(q)∂qβ2
∂β3µ(p, q)ϕβ

′

β1,β2,β3
(p, q)dq,

where the functions ϕβ
′

β1,β2,β3
(p, q) are defined naturally as the coefficient in front

of each term of the form Θβ1Φij(P,Q)J1/2(q)∂qβ2
∂β3µ(p, q) and we recall that β′ =

β + em.
We check (46) by comparing the decay with the order of differentiation in each

of the four terms (49-52). For (49), the order of differentiation is

β1 = β̄1, β2 = β̄2, β3 = β̄3 + em.

And by the induction assumption,∣∣∣∂qν1∂ν2ϕββ̄1,β̄2,β̄3
(p, q)

∣∣∣ ≤ Cq
|β|−|ν1|
0 p

|β̄1|+|β̄3|−|β|−|ν2|
0 ,

≤ Cq
|β+em|−|ν1|
0 p

|β1|+|β̄3+em|−|β+ei|−|ν2|
0

= Cq
|β′|−|ν1|
0 p

|β1|+|β3|−|β′|−|ν2|
0 .

This establishes (46) for (49).
For (50), the order of differentiation is

β1 = β̄1, β2 = β̄2 + em, β3 = β̄3.

And by the induction assumption as well as the Leibnitz rule,∣∣∣∣∂qν1∂ν2 ( q0

p0
ϕβ
β̄1,β̄2,β̄3

(p, q)
)∣∣∣∣ ≤ Cq

|β|+1−|ν1|
0 p

|β̄1|+|β̄3|−|β|−1−|ν2|
0 ,

= Cq
|β′|−|ν1|
0 p

|β1|+|β3|−|β′|−|ν2|
0 .

This establishes (46) for (50).
For (51), the order of differentiation is

β1 = β̄1 + em, β2 = β̄2, β3 = β̄3.

And by the induction assumption,∣∣∣∂qν1∂ν2ϕββ̄1,β̄2,β̄3
(p, q)

∣∣∣ ≤ Cq
|β|−|ν1|
0 p

|β̄1|+|β̄3|−|β|−|ν2|
0 ,

≤ Cq
|β′|−|ν1|
0 p

|β1|+|β3|−|β′|−|ν2|
0 .

This establishes (46) for (51).
For (52), the order of differentiation is

β1 = β̄1, β2 = β̄2, β3 = β̄3.

And by the induction assumption as well as the Leibnitz rule,∣∣∣∣∂qν1∂ν2 {(∂pm +
q0

p0
∂qm +

qm
p0q0

− qm
2p0

)
ϕβ
β̄1,β̄2,β̄3

(p, q)
}∣∣∣∣

≤ Cq|β|+1−|ν1|
0 p

|β̄1|+|β̄3|−|β|−1−|ν2|
0 ,

= Cq
|β′|−|ν1|
0 p

|β1|+|β3|−|β′|−|ν2|
0 .

This establishes (46) for (52) and therefore for all of the coefficients. �
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Next, we compute derivatives of the collision kernel in (26) which will be impor-
tant for showing that solutions F± to the relativistic Landau-Maxwell system are
positive.

Lemma 3. We compute a sum of first derivatives in q of (26) as

(53)
∑
j

∂qj
Φij(P,Q) = 2

Λ(P,Q)
p0q0

(P ·Qpi − qi) .

This term has a second order singularity at p = q. We further compute a sum of
(53) over first derivatives in p as

(54)
∑
i,j

∂pi
∂qj

Φij(P,Q) = 4
P ·Q
p0q0

{
(P ·Q)2 − 1

}−1/2

≥ 0.

This term has a first order singularity.

This result is quite different from the classical theory, it is straightforward com-
pute the derivative of the classical kernel in (13) as∑

i,j

∂vi
∂v′jφ

ij(v − v′) = 0.

On the contrary, the proof of Lemma 3 is quite technical.

Proof. Throught this proof, we temporarily suspend our use of the Einstein sum-
mation convention. Differentiating (26), we have

∂qj
Φij(P,Q) ≡

∂qj Λ(P,Q)
p0q0

Sij(P,Q)

+
Λ(P,Q)
p0q0

(
∂qj

Sij(P,Q)− qj
q2
0

Sij(P,Q)
)
.

And

∂qj
Λ(P,Q) = 2(P ·Q)

{
(P ·Q)2 − 1

}−3/2
(
qj
q0
p0 − pj

)
−3(P ·Q)3

{
(P ·Q)2 − 1

}−5/2
(
qj
q0
p0 − pj

)
.

Since (2) implies
∑
j S

ij(P,Q)
(
qj

q0
p0 − pj

)
= 0, we conclude

∑
j

∂qj Λ(P,Q)Sij(P,Q)
p0q0

= 0.

Therefore it remains to evaluate the r.h.s. of

(55)
∑
j

∂qj
Φij(P,Q) =

Λ(P,Q)
p0q0

∑
j

(
∂qj

Sij(P,Q)− qj
q2
0

Sij(P,Q)
)
.
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We take a derivative of Sij in (26) as

∂qj
Sij = 2 (P ·Q)

(
qj
q0
p0 − pj

)
δij +

(
qj
q0
p0 − pj

)
(piqj + qipj)

+ {P ·Q− 1} (pi + δijpj) + (1 + δij) (pi − qi)

= 2 (P ·Q)
(
qj
q0
p0 − pj

)
δij +

(
q2
j

p0

q0
pi + pjqj

p0

q0
qi − pipjqj − qip2

j

)
+P ·Q (1 + δij) pi − (1 + δij) qi.

Next, sum this expression over j to obtain∑
j

∂qj
Sij = 2 (P ·Q)

(
qi
q0
p0 − pi

)
+
p0

q0

(
|q|2pi + p · qqi

)
−p · qpi − |p|2qi + 4P ·Qpi − 4qi.

We collect terms which are coefficients of pi and qi respectively∑
j

∂qjS
ij = qi

{
2 (P ·Q)

p0

q0
+ p · q p0

q0
− |p|2 − 4

}

+pi

{
−2P ·Q+ |q|2 p0

q0
− p · q + 4P ·Q

}
= qi

(
p0

q0
P ·Q− 3

)
+ pi

(
3P ·Q− p0

q0

)
,(56)

where the last line follows from plugging |p|2 = p2
0 − 1 = p0q0

p0
q0
− 1 into the first

line and plugging
|q|2 p0

q0
= q2

0

p0

q0
− p0

q0
= p0q0 −

p0

q0

into the second line.
Turning to the computation of − 1

q20

∑
j qjS

ij , we plug (26) into the following∑
j

qjS
ij(P,Q) =

{
(P ·Q)2 − 1

}
qi − (pi − qi) q · (p− q)

+ {(P ·Q)− 1}
(
p · qqi + |q|2pi

)
We collect terms which are coefficients of pi and qi respectively to obtain

= qi

(
(P ·Q)2 − 1 + q · (p− q) + p · q {P ·Q− 1}

)
+pi

(
−q · (p− q) + |q|2 {P ·Q− 1}

)
= qi

(
(P ·Q)2 − 1− |q|2 + p · q (P ·Q)

)
+ pi

(
−p · q + |q|2P ·Q

)
= qi

(
|p|2q2

0 − p0q0p · q
)

+ pi
(
|q|2P ·Q− p · q

)
= qi

(
p2

0q
2
0 − p0q0p · q − q2

0

)
+ pi

(
q2
0P ·Q− P ·Q− p · q

)
= p0q0qi

(
P ·Q− q0

p0

)
+ q2

0pi

(
P ·Q− p0

q0

)
.

Divide this expression by q2
0 to conclude∑

j

qj
q2
0

Sij = qi

(
p0

q0
P ·Q− 1

)
+ pi

(
P ·Q− p0

q0

)
.(57)
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This and (56) are very symmetric expressions.
We combine (56) and (57) to obtain∑

j

(
∂qjS

ij − qj
q2
0

Sij
)

= qi

(
p0

q0
P ·Q− 3

)
+ pi

(
3P ·Q− p0

q0

)

−qi
(
p0

q0
P ·Q− 1

)
− pi

(
P ·Q− p0

q0

)
= 2 (P ·Qpi − qi) .

We note that this term has a first order cancellation at p = q. We plug this last
display into (55) to obtain (53).

We differentiate (53) to obtain∑
i

∂pi

∑
j

∂qj Φij(P,Q) = 2
∑
i

∂piΛ(P,Q)
p0q0

(P ·Qpi − qi)

+2
Λ(P,Q)
p0q0

∑
i

(
∂pi
− pi
p2

0

)
(P ·Qpi − qi) .(58)

And we can write the derivative of Λ as

∂piΛ(P,Q) = −(P ·Q)
{

(P ·Q)2 − 1
}−5/2

(
pi
p0
q0 − qi

)(
(P ·Q)2 + 2

)
.

We compute∑
i

(
pi
p0
q0 − qi

)
((P ·Q)pi − qi) =

∑
i

(
q0

p0
(P ·Q)p2

i −
q0

p0
piqi − piqi(P ·Q) + q2

i

)
=

q0

p0
(P ·Q)|p|2 − q0

p0
p · q − p · q(P ·Q) + |q|2.

We further add and subtract q0
p0

(P ·Q) to obtain

= p0q0(P ·Q)− q0

p0
(P ·Q)− q0

p0
p · q − p · q(P ·Q) + |q|2

= p0q0(P ·Q)− q2
0 − p · q(P ·Q) + |q|2

= p0q0(P ·Q)− p · q(P ·Q)− 1
= (P ·Q)2 − 1.

We conclude that

(59)
∑
i

∂piΛ(P,Q)
p0q0

(P ·Qpi − qi) = −P ·Q
p0q0

(
(P ·Q)2 + 2

){
(P ·Q)2 − 1

}3/2
.

This term has a third order singularity. We will find that the second term in (58)
also has a third order singularity, but there is second order cancellation between
the two terms in (58).

We now evaluate the sum in second term in (58) as∑
i

(
∂pi
− pi
p2

0

)
(P ·Qpi − qi) =

∑
i

(
P ·Q+ pi

(
pi
q0

p0
− qi

)
− P ·Qp

2
i

p2
0

+
piqi
p2

0

)
= 3P ·Q+ |p|2 q0

p0
− p · q − P ·Q |p|

2

p2
0

+
p · q
p2

0

.
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We add and subtract q0
p0

as well as P ·Q
p20

to obtain

= 3P ·Q− q0

p0
+ p0q0 − p · q − P ·Q+

P ·Q
p2

0

+
p · q
p2

0

= 3P ·Q− q0

p0
+
p0q0

p2
0

= 3P ·Q.

Therefore, plugging in (26), we obtain

Λ(P,Q)
p0q0

∑
i

(
∂pi
− p2

i

p2
0

)
(P ·Qpi − qi) = 3

(P ·Q)3

p0q0

{
(P ·Q)2 − 1

}−3/2

.

Further plugging this and (59) into (58) we obtain (54). �

In the following Lemma, we will use Lemma 3 to obtain a simplified expression
for part of the collision operator (1) which will be used to prove the positvity of
our solutions F± to the relativistic Landau-Maxwell system.

Lemma 4. Given a smooth scalar function G(q) which decays rapidly at infinity,
we have

−∂pi

∫
R3

Φij(P,Q)∂qj
G(q)dq = 4

∫
R3

P ·Q
p0q0

{
(P ·Q)2 − 1

}−1/2

G(q)dq

+κ(p)G(p),

where κ(p) = 27/2πp0

∫ π
0

(
1 + |p|2 sin2 θ

)−3/2
sin θdθ.

Proof. We write out ∂pi as in (47) to observe

−∂pi

∫
Φij(P,Q)∂qj

G(q)dq = −
∫ {
− q0

p0
∂qi

+ Θei

}
Φij(P,Q)∂qj

G(q)dq

= −
∫

Θei
Φij(P,Q)∂qj

G(q)dq

+
∫

q0

p0
∂qiΦ

ij(P,Q)∂qjG(q)dq.

We split these integrals into |p− q| ≤ ε and |p− q| > ε for ε > 0. We note that the
integrals over |p − q| ≤ ε converge to zero as ε ↓ 0. We will eventually send ε ↓ 0,
so we focus on the region |p− q| > ε. We rewrite

q0

p0
∂qiΦ

ij(P,Q)∂qjG(q) = ∂qj

{
q0

p0
∂qiΦ

ij(P,Q)G(q)
}

−∂qj

{
q0

p0
∂qi

Φij(P,Q)
}
G(q).

After an integration by parts, the integrals over |p− q| > ε are

=
∫
|p−q|>ε

∂qj

{
Θei

Φij(P,Q)
}
G(q)dq

−
∫
|p−q|>ε

∂qj

{
q0

p0
∂qiΦ

ij(P,Q)
}
G(q)dq

+
∫
|p−q|>ε

∂qj

{
q0

p0
∂qi

Φij(P,Q)G(q)
}
dq.
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By the definition of Θei
in (33), this is

=
∫
|p−q|>ε

∂qj
∂pi

Φij(P,Q)G(q)dq +
∫
|p−q|>ε

∂qj

{
q0

p0
∂qi

Φij(P,Q)G(q)
}
dq.

We plug (54) into the first term above to obtain the first term on the r.h.s. of this
Lemma as ε ↓ 0. For the second term above, we apply the divergence theorem to
obtain∫
|p−q|>ε

∂qj

{
q0

p0
∂qi

Φij(P,Q)G(q)
}
dq =

∫
|p−q|=ε

q0

p0
∂qi

Φij(P,Q)
pj − qj
|p− q|

G(q)dS,

where dS is given below. By a Taylor expansion, P · Q = 1 + O(|p − q|2). Using
this and (53) we have

q0

p0
∂qi

Φij(P,Q)
pj − qj
|p− q|

= 2
Λ(P,Q)
p2

0

|p− q|+O(|p− q|−1).

And the integral over |p− q| = ε which includes the terms in O(|p− q|−1) goes to
zero as ε ↓ 0. We focus on the main part

2p−2
0

∫
|p−q|=ε

Λ(P,Q)|p− q|G(q)dS.

We multiply and divide by p0q0 + p · q + 1 to observe that

P ·Q− 1 =
|p− q|2 + |p× q|2

p0q0 + p · q + 1
.

This and (26) imply

Λ = (P ·Q)2

(
p0q0 + p · q + 1
p0q0 − p · q + 1

)3/2 (
|p− q|2 + |p× q|2

)−3/2
.

We change variables as q → p− q so that the integrand becomes Λ|q|G(p− q) and
we define q̄0 =

√
1 + |p− q|2 so that after the change of variables

Λ = (p0q̄0 − |p|2 + p · q)2

(
p0q̄0 + |p|2 − p · q + 1
p0q̄0 − |p|2 + p · q + 1

)3/2 (
|q|2 + |p× q|2

)−3/2
.

We choose the angular integration over |q| = ε in such a way that p · q = |p||q| cos θ
and dS = ε2 sin θdθdφ = ε2dω with 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π. Note that as ε ↓ 0 (on
|q| = ε)

ε3Λ→ 23/2
(
1 + |p|2 sin2 θ

)−3/2
p3

0.

Hence, as ε ↓ 0,

2p−2
0

∫
|q|=ε

Λ|q|G(p− q)dS = 2p−2
0

∫
S2
ε3ΛG(p− εω)dω → κ(p)G(p),

with κ defined in the statement of this Lemma. �

Lemma 5. There exists C > 0, such that

(60)
1
C

{
|∇pg|22 + |g|22

}
≤ |g|2σ ≤ C

{
|∇pg|22 + |g|22

}
.

Further, σij(p) is a smooth function satisfying

(61)
∣∣∂βσij(p)∣∣ ≤ Cp−|β|0 .
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Proof. The spectrum of σij(p), (27), consists of a simple eigenvalue λ1(p) > 0
associated with the vector p and a double eigenvalue λ2(p) > 0 associated with p⊥;
there are constants c1, c2 > 0 such that, as |p| → ∞, λ1(p) → c1, λ2(p) → c2. In
Lemou [8] there is a full discussion of these eigenvalues. This is enough to prove
(60); see [5] for more details on a similar argument.

We move on to (61). We combine (27) and (45) (with µ(p, q) = J1/2(q)) to
obtain

∂βσ
ij(p) = ∂β

∫
R3

Φij(P,Q)J(q)dq

=
∑

β1+β2≤β

∫
R3

Θβ1Φ(P,Q)J1/2(q)∂qβ2
J1/2(q)ϕββ1,β2,0

(p, q)dq.

By (46) then∣∣∂βσij(p)∣∣ ≤ C ∑
β1+β2≤β

p
|β1|−|β|
0

∫
|Θβ1Φ(P,Q)| J1/2(q)dq.

Recall (34), we split this integration into the sets A, B. We plug in the estimate
(35) to get

p
|β1|−|β|
0

∫
A
|Θβ1Φ(P,Q)| J1/2(q)dq ≤ Cp|β1|−|β|

0 p
−|β1|
0 = Cp

−|β|
0 .

On B we have a first order singularity but q is larger than p, in fact we use (36) to
get exponential decay in p over this region. With (37) we obtain∫

B
|Θβ1Φ(P,Q)| J1/2(q)dq ≤ CJ1/16(p)

∫
|p− q|−1

J1/4(q)dq.

We can now deduce (61). �

We now write the Landau Operators A,K,Γ in a new form which will be used
throughout the rest of the paper.

Lemma 6. We have the following representations for A,K,Γ ∈ R2, which are
defined in (22) and (23),

Ag = 2J−1/2∂pi{J1/2σij(∂pjg +
pj
2p0

g)}

= 2∂pi
(σij∂pj

g)− 1
2
σij

pi
p0

pj
p0
g + ∂pi

{
σij

pj
p0

}
g,(62)

Kg = −J(p)−1/2∂pi

{
J(p)

∫
R3

ΦijJ1/2(q)∂qj (g(q) · [1, 1])dq
}

[1, 1](63)

−J(p)−1/2∂pi

{
J(p)

∫
R3

ΦijJ1/2(q)
qj
2q0

(g(q) · [1, 1])dq
}

[1, 1],

where Φij = Φij(P,Q). Further

(64) Γ(g, h) = [Γ+(g, h),Γ−(g, h)],
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where

Γ±(g, h) =
(
∂pi −

pi
2p0

)∫
ΦijJ1/2(q)∂pjg±(p) (h(q) · [1, 1]) dq,

−
(
∂pi
− pi

2p0

)∫
ΦijJ1/2(q)g±(p)∂qj

(h(q) · [1, 1]) dq.

Proof. For (62) it suffices to consider 2J(p)−1/2C(J1/2g±, J):

≡ 2J(p)−1/2∂pi

∫
R3

Φij(P,Q)
{
∂pj

(
J1/2g±(p)

)
J(q)−

(
J1/2g±(p)

)
∂qj

J(q)
}
dq

= 2J(p)−1/2∂pi

∫
R3

Φij(P,Q)J(q)J(p)1/2

{
∂pj

g± +
(
qj
q0
− pj

2p0

)
g±

}
dq

= 2J(p)−1/2∂pi

{
σij(p)J(p)1/2

(
∂pj

g± +
pj
2p0

g±

)}
.

Above, we have used the null space of Φ in (2). Below, we move some derivatives
inside and cancel out one term.

= 2∂pi

{
σij(p)

(
∂pj

g± +
pj
2p0

g±

)}
− pi
p0

{
σij(p)

(
∂pj

g± +
pj
2p0

g±

)}
= 2∂pi

{
σij(p)∂pjg±

}
+ ∂pi

{
σij(p)

pj
p0

}
g± −

1
2
σij(p)

pi
p0

pj
p0
g±.

For K simply plug (25) with normalized constants into (22). For Γ, we use the
null condition (2) to compute J(p)−1/2C(

√
Jg+,

√
Jh−)

= J(p)−1/2∂pi

∫
Φij(P,Q)J1/2(q)J1/2(p)

{
h−(q)∂pj

g+(p)− ∂qj
h−(q)g+(p)

}
dq

+J(p)−1/2∂pi

∫
Φij(P,Q)J1/2(q)J1/2(p)

{
qj
2q0
− pj

2p0

}
h−(q)g+(p)dq

= J(p)−1/2∂pi

∫
Φij(P,Q)J1/2(q)J1/2(p)

{
h−(q)∂pj

g+(p)− ∂qj
h−(q)g+(p)

}
dq

=
(
∂pi −

pi
2p0

)∫
Φij(P,Q)J1/2(q)

{
h−(q)∂pjg+(p)− ∂qjh−(q)g+(p)

}
dq.

Plug four of these type calculations into (23) to obtain (64). �

We will use these expressions just proven to get the estimates below.

Lemma 7. Let |β| > 0. For any small η > 0, there exists Cη > 0 such that

−〈∂β{Ag}, ∂βg〉 ≥ |∂βg|2σ − η
∑
|α|≤|β|

|∂αg|2σ − Cη|g|22,(65)

|〈∂β{Kg}, ∂βh〉| ≤

η ∑
|β̄|≤|β|

∣∣∂β̄g∣∣σ + Cη |g|2

 |∂βh|σ .(66)

Proof. We will prove (65) for a real valued function g to make the notation less
cumbersome, although the result follows trivially for g = [g+, g−]. We write out
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the inner product in (65) using (62) to achieve

〈∂β{Ag}, ∂βg〉 =
∫

R3
∂β

(
∂pi

{
σij

pi
p0

}
g

)
∂βgdp.

−
∫

R3

{
1
2
∂β

(
σij

pi
p0

pj
p0
g

)
∂βg + 2∂β [σij∂pjg]∂pi∂βg

}
dp

= −|∂βg|2σ +
∑
α≤β

Cαβ

∫
R3
∂β−α∂pi

{
σij

pi
p0

}
∂αg∂βgdp(67)

−
∑
α<β

Cαβ

∫
R3

2∂β−ασij∂α∂pj
g∂pi

∂βgdp

−
∑
α<β

Cαβ

∫
R3

1
2
∂β−α

(
σij

pi
p0

pj
p0

)
∂αg∂βgdp

Since α < β in the last two terms below, (61) gives us the following estimate∣∣∣∣∂β−α∂pi

{
σij

pi
p0

}∣∣∣∣+
∣∣∂β−ασij∣∣+

∣∣∣∣∂β−α(σij pip0

pj
p0

)∣∣∣∣ ≤ Cp−1
0

We bound the second and fourth terms in (67) by

C
∑
α≤β

∫
R3
p−1

0 |∂αg∂βg| dp =
∫
|p|≤m

+
∫
|p|>m

On the unbounded part we use Cauchy-Schwartz

∑
α≤β

∫
|p|>m

p−1
0 |∂αg∂βg| dp ≤

C

m
|∂βg|σ

∑
α≤β

|∂αg|σ ≤
C

m

∑
α≤β

|∂αg|2σ

On the compact part we use the compact interpolation of Sobolev-spaces∫
|p|≤m

∑
α≤β

|∂αg∂βg| dp ≤
∫
|p|≤m

∑
α≤β

|∂αg|2 + |∂βg|2 dp

≤ η′
∑

|α|=|β|+1

∫
|p|≤m

|∂αg|2 dp+ Cη′

∫
|p|≤m

|g|2 dp

≤ η
∑
|α|≤|β|

|∂αg|2σ + Cη|g|22

For the third term in (67), we split into two cases, first suppose |α| < |β| − 1 and
integrate by parts on ∂pi

to obtain

∑
|α|<|β|−1

∫
R3

2
(
∂β−α∂pi

σij∂α∂pj
g + ∂β−ασ

ij∂pi
∂α∂pj

g
)
∂βgdp
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We bound this term by

C
∑
|α|<|β|

∫
R3
p−1

0

∣∣∂α∂pjg∂βg
∣∣ dp =

∫
|p|≤m

+
∫
|p|>m

≤
∫
|p|≤m

+
C

m
|∂βg|σ

∑
|α|<|β|

|∂αg|σ

≤
∫
|p|≤m

+
C

m

∑
|α|≤|β|

|∂αg|2σ

By the compact interpolation of Sobolev spaces∑
|α|<|β|

∫
|p|≤m

∣∣∂α∂pj
g∂βg

∣∣ dp ≤ η ∑
|α|≤|β|

|∂αg|2σ + Cη|g|22

Finally, if |α| = |β| − 1 for the third term in (67), we integrate by parts and use
symmetry

2
∫

R3
∂β−ασ

ij∂α∂pj
g∂pi

∂βgdp = 2
∫

R3
∂β−ασ

ij∂α∂pj
g∂β−α∂α∂pi

gdp

= −
∫

R3
∂2
β−ασ

ij∂α∂pj
g∂α∂pi

gdp.

Because the order of the derivatives on g is now = |β|, we can again use the compact
interpolation of Sobolev spaces and (61) to get the same bounds as for the last case
|α| < |β| − 1 . We obtain

−〈∂β{Ag}, ∂βg〉 ≥ |∂βg|2σ −
(
η +

C

m

) ∑
|α|≤|β|

|∂αg|2σ − Cη|g|22,

This completes the estimate (65).
We now consider 〈∂β{Kg}, ∂βh〉 and (66). Recalling (63), we use (45) with

µ(p, q) =
{
∂qj

+ qj

2q0

}
(g(q) · [1, 1]), the Leibnitz formula as well as an integration

by parts to express 〈∂β{Kg}, ∂βh〉 as∑∫∫
Θα1Φij(P,Q)

√
J(p)J(q)∂qα2

{
∂qj

+
qj
2q0

}
(g(q) · [1, 1])

×∂β1(h(p) · [1, 1])ϕ̄β,β1
α1,α2,0

(p, q)dqdp,

where the sum is α1 +α2 ≤ β, |β| ≤ |β1| ≤ |β|+ 1. And ϕ̄β,β1
α1,α2,0

(p, q) is a collection
of the inessential terms, it satisfies the decay estimate (46) independent of the value
of β1. Therefore we can further express 〈∂β{Kg}, ∂βh〉 as∑∫∫

µ̄β1β2(p, q)J(p)1/4J(q)1/4∂β1(h(p) · [1, 1])∂qβ2
(g(q) · [1, 1])dqdp

where the sum is over |β2| ≤ |β|+ 1, |β| ≤ |β1| ≤ |β|+ 1. And, using (35) and (37),
we see that µ̄β1β2(p, q) is a collection of L2 functions. Therefore, as in (80), we split
〈∂β{Kg}, ∂βh〉 to get∑∫∫

ψij(p, q)J(p)1/4J(q)1/4∂β1(h(p) · [1, 1])∂qβ2
(g(q) · [1, 1])dqdp

+
∑∫∫

{µ̄β1β2 − ψij} J(p)1/4J(q)1/4∂β1(h(p) · [1, 1])∂qβ2
(g(q) · [1, 1])dqdp.
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In the same fashion as J2 in (80), for any m > 0, we estimate the second term
above by

C

m
|∂βh|σ

∑
|β̄|≤|β|

∣∣∂β̄g∣∣σ .
Since ψij(p, q) is a smooth function with compact support, we integrate by parts
over q repeatedly to bound the first term by

∑∣∣∣∣∫∫ ∂β1{ψij(p, q)J(q)1/4}J(p)1/4(g(q) · [1, 1])∂β1(h(p) · [1, 1])dqdp
∣∣∣∣

≤ C(m)
∑∫∫

J(q)1/8J(p)1/4 |(g(q) · [1, 1])∂β1(h(p) · [1, 1])| dqdp

≤ C(m) |g|2
∑
|∂β1h|2 ≤ C(m) |g|2 |∂βh|σ .

where the final sum above is over |β| ≤ |β1| ≤ |β| + 1. And we have used (60) to
get the last inequality. We conclude our lemma by choosing m large. �

We now estimate the nonlinear term Γ(f, g):

Theorem 4. Let |γ|+ |β| ≤ N, then∣∣∣〈∂γβΓ(f, g), ∂γβh〉
∣∣∣ ≤ C∑{|∂γ1β3

f |2|∂γ−γ1β2
g|σ + |∂γ1β3

f |σ|∂γ−γ1β2
g|2}|∂γβh|σ,(68)

where the summation is over γ1 ≤ γ, β2 + β3 ≤ β. Further∣∣∣(∂γβΓ(f, g), ∂γβh)
∣∣∣ ≤ C‖∂γβh‖σ {|||g|||σ|||f |||+ |||f |||σ|||g|||} .

Proof. Notice ∂γΓ(f, g) =
∑
γ1≤γ C

γ1
γ Γ(∂γ1f, ∂γ−γ1g); thus it suffices to only con-

sider the p derivatives. From (64), using (45), we can write ∂βΓ(f, g) as

∂pi

∫
Θβ1Φij(P,Q)

√
J(q)∂qβ2

∂β3

{
∂pj

fl(p)gk(q)
}
ϕββ1,β2,β3

(p, q)dq

−∂pi

∫
Θβ1Φij(P,Q)

√
J(q)∂qβ2

∂β3

{
fl(p)∂qjgk(q)

}
ϕββ1,β2,β3

(p, q)dq

+
∫

Θβ1Φij(P,Q)
√
J(q)∂qβ2

∂β3

{
fl(p)∂qj

gk(q)
pi

2p0

}
ϕββ1,β2,β3

(p, q)dq

−
∫

Θβ1Φij(P,Q)
√
J(q)∂qβ2

∂β3

{
∂pj

fl(p)gk(q)
pi

2p0

}
ϕββ1,β2,β3

(p, q)dq.

Above, we implicitly sum over i, j ∈ {1, 2, 3}, β1 + β2 + β3 ≤ β and k ∈ {+,−}.
And l ∈ {+,−}. Recall ϕββ1,β2,β3

(p, q) from Theorem 3. Further (46) implies

∣∣∣ϕββ1,β2,β3
(p, q)

∣∣∣ ≤ Cq|β|0 .
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We use the above two displays and integrate by parts over ∂pi
in the first two terms,

to bound |〈∂βΓ(f, g), ∂βh〉| above by

C

∫∫
J1/4(q)

∣∣∣Θβ1Φij(P,Q)∂qβ2
gk(q)∂β3∂pj

fl(p)∂pi
∂βhl(p)

∣∣∣ dqdp(69)

+C
∫∫

J1/4(q)
∣∣∣Θβ1Φij(P,Q)∂qβ2

∂qjgk(q)∂β3fl(p)∂pi∂βhl(p)
∣∣∣ dqdp(70)

+C
∫∫

J1/4(q)
∣∣∣Θβ1Φij(P,Q)∂qβ2

∂qj
gk(q)∂β3fl(p)∂βhl(p)

∣∣∣ dqdp
+C

∫∫
J1/4(q)

∣∣∣Θβ1Φij(P,Q)∂qβ2
gk(q)∂β3∂pjfl(p)∂βhl(p)

∣∣∣ dqdp.
In the above expressions, we add the summation over l ∈ {+,−}. It suffices to
estimate (69) and (70); the other two terms are similar. While estimating these
terms we will repeatedly use the equivalence of the norms in (60) without mention.
We start with (69).

We next split (69) into the two regions, A and B, defined in (34). We then use
(37) and the Cauchy-Schwartz inequality to estimate (69) over B∫∫

B
J1/4(q)

∣∣∣Θβ1Φij(P,Q)∂qβ2
gk(q)∂β3∂pjfl(p)∂pi∂βhl(p)

∣∣∣ dqdp
≤ C

∫∫
B
|p− q|−1J1/8(q)

∣∣∣∂qβ2
gk(q)∂β3∂pj

fl(p)∂pi
∂βhl(p)

∣∣∣ dqdp
≤ C|∂βh|σ

(∫
R3

∣∣∂β3∂pjfl(p)
∣∣2(∫

B
|p− q|−1J1/8(q)

∣∣∣∂qβ2
gk(q)

∣∣∣ dq)2

dp

)1/2

≤ C|∂βh|σ|∂β2g|2
(∫

R3

∣∣∂β3∂pjfl(p)
∣∣2(∫

B
|p− q|−2J1/4(q)dq

)
dp

)1/2

≤ C|∂βh|σ|∂β2g|2|∂β3f |σ,

where use (36) to say that
∫
B |p− q|

−2J1/4(q)dq ≤ C. This completes the estimate
of (69) over B.

We estimate (69) over A using (35)∫∫
A
J1/4(q)

∣∣∣Θβ1Φij(P,Q)∂qβ2
gk(q)∂β3∂pj

fl(p)∂pi
∂βhl(p)

∣∣∣ dqdp
≤ C

∫∫
J1/8(q)

∣∣∣∂qβ2
gk(q)∂β3∂pjfl(p)∂pi∂βhl(p)

∣∣∣ dqdp
≤ C|∂βh|σ|∂β2g|2|∂β3f |σ.

This completes the estimate for (69).
Note that the difference between (70) and (69) is that ∂qj hits g in (70) whereas

∂pj
hit f in (69). This difference means we will need to use the norm | · |σ to

estimate g but we are able to use the smaller norm | · |2 to estimate f . This is in
contrast to the estimate for (69) where the opposite situation held. The main point
is that | · |σ includes first order p derivatives.

Using the same splitting over A and B as well as the same type calculation, (70)
is bounded by |∂βh|σ|∂β2g|σ|∂β3f |2. This completes the estimate for (70).

The proof of (69) follows from the Sobolev embedding: H2(T3) ⊂ L∞(T3).
Without loss of generality, assume |γ1| ≤ N/2. This Sobolev embedding grants us
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that (
sup
x
|∂γ1β2

f(x)|2
)
|∂γ−γ1β3

g(x)|σ +
(

sup
x
|∂γ1β2

f(x)|σ
)
|∂γ−γ1β3

g(x)|2

≤
(∑

‖∂γ̄β2
f‖
)
|∂γ−γ1β3

g(x)|σ +

(∑
‖∂γ̄β2

f‖σ

)
|∂γ−γ1β3

g(x)|2,

where summation is over |γ̄| ≤ |γ1| + 2 ≤ N since N ≥ 4. We conclude (69) by
integrating (68) further over T3. �

We next prove the important estimates which are needed to prove Theorem 2 in
Section 5.

Theorem 5. Let |γ| ≤ N . let g(x, p) be a smooth vector valued L2(T3
x × R3

p; R2)
function and h(p) a smooth vector valued L2(R3

p; R2) function, we have

(71) ‖〈∂γΓ(g, g), h〉‖ ≤ C
∑
|β|≤2

|∂βh|2
∑
|γ|≤N

‖∂γg‖
∑
|γ|≤N

‖∂γg‖σ

Moreover,

(72) ‖〈L∂γg, h〉‖ ≤ C‖∂γg‖
∑
|β|≤2

|∂βh|2

Proof. We begin with the linear term. By Lemma 6, (21) and two integrations by
parts 〈L∂γg, h〉 is given by∫ {

−∂γg · ∂pj

(
∂pih(p)2σij

)
+

1
2
σij

pi
p0

pj
p0
∂γg · h(p)

}
dp

−
∫ {

∂pi

{
σij

pi
p0

}
∂γg · h(p)

}
dp

−
∫∫

qj
2q0

Φij(P,Q)
√
J(q)J(p)∂γgl(q)∂pi

{
J(p)−1/2hk(p)

}
dqdp,

+
∫∫

∂qj

{
Φij(P,Q)

√
J(q)

}
J(p)∂γgl(q)∂pi

{
J(p)−1/2hk(p)

}
dqdp

we implicitly sum over i, j ∈ {1, 2, 3} and k, l ∈ {+,−}. Using cauchy’s inequality,
‖〈L∂γg, h〉‖2 is bounded by

2
∫ (∫ {

−∂γg · ∂pj

(
∂pih(p)2σij

)
+

1
2
σij

pi
p0

pj
p0
∂γg · h(p)

}
dp

)2

dx

2
∫ (∫ {

∂pi

{
σij

pi
p0

}
∂γg · h(p)

}
dp

)2

dx(73)

+2
∫ (∫∫

qj
2q0

Φij(P,Q)
√
J(q)J(p)∂γgl(q)∂pi

{
J(p)−1/2hk(p)

}
dqdp

)2

dx

plus

2
∫ (∫∫

∂qj

{
Φij(P,Q)

√
J(q)

}
J(p)∂γgl(q)∂pi

{
J(p)−1/2hk(p)

}
dqdp.

)2

dx

(74)

We have split (73) and (74) because we will estimate each one separately.
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By the Cauchy-Schwartz inequality as well as (61), and that h(p) is not a function
of x, the first and second lines of (73) are bounded by

C
∑
|β|≤2

|∂βh|22
∫
|∂γg(x)|22dx = C‖∂γg‖2

∑
|β|≤2

|∂βh|22

This completes (72) for the first and second lines of (73).
By the Cauchy-Schwartz inequality over dp the third line of (73) is bounded by

C
∑
|β|≤1

|∂βh|22
∫ (∫

J1/2(q) |∂γgl(q)|
{∫

Φij(P,Q)2J1/2(p)dp
}1/2

dq

)2

dx

Recall again the splitting in (34), apply (35) and (37) (with α1 = 0) to obtain∫
Φij(P,Q)2J1/2(p)dp =

∫
A

+
∫
B

≤ Cq12
0 + q14

0

∫
B
|p− q|−2J1/4(p)dp

≤ Cq14
0

Using the Cauchy-Schwartz inequality again, this implies that the third line of (73)
is bounded by C‖∂γg‖2

∑
|β|≤1 |∂βh|22.

To establish (72) it remains to estimate (74). From (33), we write

∂qj
= −p0

q0
∂pj

+
(
∂qj

+
p0

q0
∂pj

)
= −p0

q0
∂pj

+ Θej
(q, p)

where ej is an element of the standard basis in R3. For the rest of this proof, we
write Θej

= Θej
(q, p) for notational simplicity (although the reader should note

that it is the opposite of the shorthand we were using previously). Further,

∂qj

{
Φij(P,Q)J1/2(q)

}
= −Φij(P,Q)

qj
2q0

√
J(q)

−
√
J(q)

p0

q0
∂pj Φij(P,Q) +

√
J(q)Θej Φij(P,Q).

We plug the above into (74) and integrate by parts for the middle term in (74) to
bound (74) by

C

∫ (∫∫ √
J(q)

√
J(p)

∣∣Φij(P,Q)∂γgl(q)
∣∣ |∂βhk(p)| dqdp

)2

dx(75)

+C
∫ (∫∫ √

J(q)
√
J(p)

∣∣Θej
Φij(P,Q)∂γgl(q)

∣∣ |∂βhk(p)| dqdp
)2

dx.

Above, we add the implicit summation over |β| ≤ 2. By the same estimates as for
(73), the first term in (75) is ≤ C‖∂γg‖2

∑
|β|≤2 |∂βh|22.

To establish (72), it remains to estimate the second term in (75). To this end,
we note that Θej (q, p)P ·Q = 0. Further, Θej (q, p)Φij(P,Q) satisfies the estimates

|Θej (q, p)Φ(P,Q)| ≤ Cq6
0q
−1
0 on A,

|Θej
(q, p)Φ(P,Q)| ≤ Cq7

0q
−1
0 |p− q|−1 on B,

where we recall the sets from (34). This can be shown directly, by repeating the
proof of (35) and (37) using the operator Θej

(q, p) in place of the operator Θej
(p, q).

Plugging these estimates into the second term of (75), we can show that it is
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bounded by C‖∂γg‖2
∑
|β|≤2 |∂βh|22 using the same estimates as used for (73). This

completes the estimate (72).
We turn to the estimate for the non-linear term (71). This estimate employs

the same idea as for the linear term (72), i.e. to move the momentum derivatives
around so that we can get an upper bound in terms of at least one ‖ · ‖ norm.

The inner product 〈∂γΓ(g, g), h〉, using (64) and an integration by parts, is equal
to

−Cγ1γ
∫∫

Φij
√
J(q)∂pj

∂γ1gl(p)∂γ−γ1gk(q)
(
∂pi

+
pi

2p0

)
hl(p)dqdp,

+Cγ1γ

∫∫
Φij
√
J(q)∂γ1gl(p)∂qj

∂γ−γ1gk(q)
(
∂pi

+
pi

2p0

)
hl(p)dqdp.

Above we implicitly sum is over i, j ∈ {1, 2, 3}, γ1 ≤ γ and l, k ∈ {+,−}.
Assume, without loss of generality, that |γ1| ≤ N/2 (and N ≥ 4). We then

integrate by parts with respect to ∂pj
for the first term above. After this integration

by parts, we obtain a term like ∂pj
Φij . For this term we write it as ∂pj

Φij =
− q0
p0
∂qj

Φij + Θej
(p, q)Φij , where we used the notation (33). We then integrate by

parts again for this term with respect to ∂qj . The result is bounded above by

C

∫∫
J1/4(q)

∣∣Θej (p, q)Φij
∣∣ ∣∣∂γ1gl(p)∂γ−γ1gk(q)

∣∣ |∂βhl(p)| dqdp,
+C

∫∫ √
J(q)

∣∣Φij(P,Q)
∣∣ ∣∣∣∂γ1gl(p)∂qβ1

∂γ−γ1gk(q)
∣∣∣ |∂βhl(p)| dqdp,

where we sum over everything from the last display as well as over |β1| ≤ 1 and
|β| ≤ 2. The main point is that we took ∂pj

off of the function on which we want to
have an L2 estimate (the function with less spatial derivatives). We use the same
procedure used to estimate (69) to obtain the upper bound (for both terms above)

C
∑
|β|≤2

|∂βh|2
∑

|γ1|≤N/2

|∂γ1g|2|∂γ−γ1g|σ

Therefore |〈∂γΓ(g, g), h〉|2 ≤ C
∑
|β|≤2 |∂βh|22

∑
|γ1|≤N/2 |∂

γ1g|22|∂γ−γ1g|2σ. Further
integrating over T3 we get

‖〈∂γΓ(g, g), h〉‖2 ≤ C
∑
|β|≤2

|∂βh|22
∑

|γ1|≤N/2

∫
|∂γ1g|22|∂γ−γ1g|2σdx.

We establish (71) by using the Sobolev embedding: H2(T3) ⊂ L∞(T3). �

We end this section with a proof that L is coercive away from it’s null space N .

Lemma 8. For any m > 1, there is 0 < C(m) <∞ such that

|〈∂pi

{
σij

pj
p0

}
g, h〉|+ |〈Kg, h〉|

≤ C

m
|g|σ |h|σ + C(m)

{∫
|p|≤C(m)

|g|2dp

}1/2{∫
|p|≤C(m)

|h|2dp

}1/2

.(76)

Moreover, there is δ > 0, such that

(77) 〈Lg, g〉 ≥ δ| (I−P) g|2σ.
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Proof. We first prove (76). We split

(78)
∫
∂pi

{
σij

pj
p0

}
{g+h+ + g−h−} dp =

∫
{|p|≤m}

+
∫
{|p|≥m}

.

By (61) ∣∣∣∣∂pi

{
σij

pj
p0

}∣∣∣∣ ≤ Cp−1
0 .

So the first integral in (78) is bounded by the right hand side of (76). From the
Cauchy-Schwartz inequality and (60) we obtain

(79)
∫
{|p|≥m}

≤ C

m

∫
|g||h|dp ≤ C

m
|g|σ |h|σ .

Consider the linear operator K in (63). After an integration by parts we can write

〈Kg, h〉 =
∑∫∫

ΦijJ1/4(p)J1/4(q)Ψα1α2(p, q)∂α1gk(q)∂α2hl(p)dqdp,

where Φij = Φij(P,Q) and the sum is over i, j ∈ {1, 2, 3}, |α1| ≤ 1, |α2| ≤ 1 and
k, l ∈ {+,−}. Also, Ψα1α2(p, q) is a collection of smooth functions, in which we
collect all the inessential terms, that satisfies

|∇Ψα1α2(p, q)|+ |Ψα1α2(p, q)| ≤ CJ1/8(p)J1/8(q).

From (26) as well as Proposition 1,

Φij(P,Q)J1/4(p)J1/4(q) ∈ L2(R3 × R3).

Therefore, for any given m > 0, we can choose a C∞c function ψij(p, q) such that

||ΦijJ1/4(p)J1/4(q)− ψij ||L2(R3
p×R3

q) ≤ 1
m ,

supp{ψij} ⊂ {|p|+ |q| ≤ C(m)}, C(m) <∞.

We split

ΦijJ1/4(p)J1/4(q) = ψij + {ΦijJ1/4(p)J1/4(q)− ψij}

and

(80) 〈Kg, h〉 = J1(g, h) + J2(g, h),

with

J1 =
∑∫∫

ψij(p, q)Ψα1α2(p, q)∂α1gk(q)∂α2hl(p)dqdp,

J2 =
∑∫∫

{ΦijJ1/4(p)J1/4(q)− ψij}Ψα1α2(p, q)∂α1gk(q)∂α2hl(p)dqdp.

The second term J2 is bounded in absolute value by

||ΦijJ1/4(p)J1/4(q)− ψij ||L2(R3
p×R3

q)||Ψα1α2∂α1gk(q)∂α2hl(p)||L2(R3
p×R3

q)

≤ C

m

∣∣∣J1/8∂α1gk

∣∣∣
2

∣∣∣J1/8∂α2hl

∣∣∣
2
≤ C

m
|g|σ |h|σ ,
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where we have used the equivalence of the norms (60). For J1, an integration by
parts over p and q yields

J1 =
∑

(−1)α1+α2

∫∫
∂α2∂

q
α1
{ψij(p, q)Ψα1α2(p, q)} gk(q)hl(p)dqdp

≤ C||ψij ||C2

{∫
|p|≤C(m)

|g|2dp

}1/2{∫
|p|≤C(m)

|h|2dp

}1/2

.(81)

This concludes (76).
We use the method of contradiction to prove (77). The converse grants us a

sequence of normalized functions gn(p) = [gn+(p), gn−(p)] such that |gn|σ ≡ 1 and∫
R3
gnJ1/2dp =

∫
R3
pjg

nJ1/2dp =
∫

R3
gnp0J

1/2dp = 0,(82)

〈Lgn, gn〉 = −〈Agn, gn〉 − 〈Kgn, gn〉 ≤ 1/n.(83)

We denote the weak limit, with respect to the inner product 〈·, ·〉σ, of gn (up to
a subsequence) by g0. Lower semi-continuity of the weak limit implies |g0|σ ≤ 1.
From (62), (63) and (21) we have

〈Lgn, gn〉 = |gn|2σ − 〈∂pi

{
σij

pj
p0

}
gn, gn〉 − 〈Kgn, gn〉.

We claim that

lim
n→∞

〈∂pi

{
σij

pj
p0

}
gn, gn〉 = 〈∂pi

{
σij

pj
p0

}
g0, g0〉, lim

n→∞
〈Kgn, gn〉 → 〈Kg0, g0〉.

For any given m > 0, since ∂pi
gn are bounded in L2{|p| ≤ m} from |gn|σ = 1 and

(60), the Rellich theorem implies∫
{|p|≤m}

∂pi

{
σij

pj
p0

}
(gn)2 →

∫
{|p|≤m}

∂pi

{
σij

pj
p0

}
(g0)2.

On the other hand, by (79) with g = h = gn, the integral over {|p| ≥ m} is bounded
by O(1/m). By first choosing m sufficiently large and then sending n → ∞, we
conclude 〈∂pi

{σijpj/p0}gn, gn〉 → 〈∂pi
{σijpj/p0}g0, g0〉.

We split 〈Kgn, gn〉 into J1 and J2 as in (80), then J2(gn, gn) ≤ C
m . In the same

manner as for (81), we obtain

∣∣J1(gn, gn)− J1(g0, g0)
∣∣ ≤ C(m)

{∫
|p|≤C(m)

|gn − g0|2dp

}1/2

Then the Rellich theorem implies, up to a subsequence, J1(gn, gn) → J1(g0, g0).
Again by first choosingm large and then letting n→∞, we conclude that 〈Kgn, gn〉 →
〈Kg0, g0〉.

Letting n→∞ in (83), we have shown that

0 = 1− 〈∂pi
{σijpj/p0}g0, g0〉 − 〈Kg0, g0〉.

Equivalently
0 =

(
1− |g0|2σ

)
+ 〈Lg0, g0〉.

Since both terms are non-negative, |g0|2σ = 1 and 〈Lg0, g0〉 = 0. By Lemma 1,
g0 = Pg0. On the other hand, letting n→∞ in (82) we deduce that g0 = (I−P) g0

or g0 ≡ 0; this contradicts |g0|2σ = 1. �
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4. Local Solutions

We now construct a unique local-in time solution to the relativistic Landau-
Maxwell system with normalized constants (29) and (30), with constraint (31).

Theorem 6. There exist M0 > 0 and T ∗ > 0 such that if T ∗ ≤M0/2 and

E(0) ≤M0/2,

then there exists a unique solution [f(t, x, p), E(t, x), B(t, x)] to the relativistic Landau-
Maxwell system (29) and (30) with constraint (31) in [0, T ∗)× T3 × R3 such that

sup
0≤t≤T∗

E(t) ≤M0.

The high order energy norm E(t) is continuous over [0, T ∗). If

F0(x, p) = J + J1/2f0 ≥ 0,

then F (t, x, p) = J + J1/2f(t, x, p) ≥ 0. Furthermore, the conservation laws (10),
(11), (12) hold for all 0 < t < T ∗ if they are valid initially at t = 0.

We consider the following iterating sequence (n ≥ 0) for solving the relativis-
tic Landau-Maxwell system for the perturbation (29) with normalized constants
(Remark 1):{

∂t +
p

p0
· ∇x + ξ

(
En +

p

p0
×Bn

)
· ∇p −A−

ξ

2

(
En · p

p0

)}
fn+1

= ξ1

{
En · p

p0

}√
J +Kfn + Γ(fn+1, fn)(84)

+
√
J
(
fn+1 − fn

)
∂pi

∫
R3

Φij(P,Q)∂qi

(√
J(q)fn(q) · [1, 1]

)
dq

+
√
J
(
fn+1 − fn

)
∂pi

∫
R3

Φij(P,Q)∂qi
J(q)dq,

∂tE
n −∇x ×Bn = −J n = −

∫
R3

p

p0

√
J{fn+ − fn−}dp,

∂tB
n +∇x × En = 0,

∇x · En = ρn =
∫

R3

√
J{fn+ − fn−}dp, ∇x ·Bn = 0.

Above ξ1 = [1,−1], and the 2 × 2 matrix ξ is diag(1,−1). We start the iteration
with

f0(t, x, p) = [f0
+(t, x, p), f0

−(t, x, p)] ≡ [f0,+(x, p), f0,−(x, p)].

Then solve for [E0(t, x), B0(t, x)] through the Maxwell system with initial datum
[E0(x), B0(x)]. We then iteratively solve for

fn+1(t, x, p) = [fn+1
+ (t, x, p), fn+1

− (t, x, p)], En+1(t, x), Bn+1(t, x)

with initial datum [f0,±(x, p), E0(x), B0(x)].
It is standard from the linear theory to verify that the sequence [fn, En, Bn] is

well-defined for all n ≥ 0. Our goal is to get an uniform in n estimate for the energy
En(t) ≡ E(fn, En, Bn)(t).
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Lemma 9. There exists M0 > 0 and T ∗ > 0 such that if T ∗ ≤ M0
2 and

E(0) ≤M0/2

then sup0≤t≤T∗ En(t) ≤M0 implies sup0≤t≤T∗ En+1(t) ≤M0.

Proof. Assume |γ|+ |β| ≤ N and take ∂γβ derivatives of (84), we obtain:{
∂t +

p

p0
· ∇x + ξ

(
En +

p

p0
×Bn

)
· ∇p

}
∂γβf

n+1

−∂β{A∂γfn+1} − ξ1∂γEn · ∂β
{
p

p0
J1/2

}
= −

∑
β1 6=0

Cβ1
β ∂β1

(
p

p0

)
· ∇x∂γβ−β1

fn+1(85)

+
∑

Cβ1
β

ξ

2

{
∂γ1En · ∂β1

(
p

p0

)}
∂γ−γ1β−β1

fn+1

−ξ
∑
γ1 6=0

Cγ1γ ∂
γ1En · ∇p∂γ−γ1β fn+1

+ξ
∑

(γ1,β1)6=(0,0)

Cγ1γ C
β1
β ∂β1

(
p

p0

)
× ∂γ1Bn · ∇p∂γ−γ1β−β1

fn+1

+∂β{K∂γfn}+ ∂γβΓ(fn+1, fn)

+
∑

Cβ1
β Cγ1γ ∂β−β1

{√
J∂γ−γ1

(
fn+1 − fn

)}
×∂β1∂pi

∫
R3

Φij(P,Q)∂qi

(√
J(q)∂γ1fn(q) · [1, 1]

)
dq

+
∑

Cβ1
β ∂β−β1

{√
J∂γ

(
fn+1 − fn

)}
∂β1∂pi

∫
R3

Φij(P,Q)∂qi
J(q)dq.

We take the inner product of (85) with ∂γβf
n+1 over T3×R3 and estimate this inner

product term by term.
Using (65), the inner product of the first two terms on the l.h.s of (85) are

bounded from below by

1
2
d

dt
||∂γβf

n+1(t)||2 + ||∂γβf
n+1(t)||2σ − η|||fn+1(t)|||2σ − Cη‖∂γfn+1(t)‖2.

For the third term on l.h.s. of (85) we separate two cases. If β 6= 0, its inner
product is bounded by

(86)
∣∣∣(∂γEn · ∂β{p√J/p0}ξ1, ∂γβf

n+1
)∣∣∣ ≤ C||∂γEn|| |||fn+1|||.

If β = 0, we have a pure temporal and spatial derivative ∂γ = ∂γ
0

t ∂γ
1

x1
∂γ

2

x2
∂γ

3

x3
. We

first split this term as

−∂γEn ·
(
p

p0
J1/2

)
ξ1 ≡ −∂γEn+1 ·

(
p

p0
J1/2

)
ξ1

−{∂γEn − ∂γEn+1} ·
(
p

p0
J1/2

)
ξ1.(87)
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From the Maxwell system (30) and an integration by parts the inner product of the
first part is

−
(
∂γEn+1 · {p

√
J/p0}ξ1, ∂γfn+1

)
= −

∫∫
∂γEn+1 ·

(
p

p0

√
J

)
{∂γfn+1

+ − ∂γfn+1
− }dpdx

= −
∫
∂γEn+1 · ∂γJ n+1dx(88)

=
1
2
d

dt

(
||∂γEn+1(t)||2 + ||∂γBn+1(t)||2

)
.

And the inner product of second part in (87) is bounded by

C{|||En|||+ |||En+1|||}|||fn+1|||.
We now turn to the r.h.s. of (85). The first inner product is bounded by (|β1| ≥ 1)
C|||fn+1|||2. The second, third and fourth inner products on r.h.s. of (85) can be
bounded by a collection of terms of the same form

C
∑∫

T3
{|∂γ1En|+ |∂γ1Bn|}

(∫
R3
|∂γ−γ1β−β1

fn+1∂γβf
n+1|dp

)
dx(89)

+C
∑

(γ1,β1)6=(0,0)

∫
T3
{|∂γ1En|+ |∂γ1Bn|}

(∫
R3
|∇p∂γ−γ1β−β1

fn+1∂γβf
n+1|dp

)
dx

where the sums are over γ1 ≤ γ, and β1 ≤ β. From the Sobolev embedding
H2(T3) ⊂ L∞(T3) we have

sup
x

{∫
R3
|g(x, q)|2dq

}
≤
∫

R3
sup
x
|g(x, q)|2dq ≤ C

∑
|γ|≤2

||∂γg||2.(90)

We take the L∞ norm in x of the one of first two factors in (89) depending on
whether |γ1| ≤ N/2 (take the first term) or |γ1| > N/2 (take the second term).
Since N ≥ 4, by (90) and (60) we can majorize (89) by

(91) C{|||En|||+ |||Bn|||}|||fn+1|||2 ≤ C{|||En|||+ |||Bn|||}|||fn+1|||2σ.
We take (66), use Cauchy’s inequality with η and integrate over T3 to obtain(

∂β [K∂γfn], ∂γβf
n+1
)
≤ η|||fn|||2σ + η

∥∥∥∂γβfn+1
∥∥∥2

σ
+ Cη ‖∂γfn‖2 .

For the nonlinear term we use Theorem 4 to obtain

(∂γβΓ(fn, f
n+1), ∂γβf

n+1) ≤ C|||fn(t)||||||fn+1(t)|||σ||∂γβf
n+1(t)||σ

+C|||fn(t)|||σ|||fn+1(t)|||||∂γβf
n+1(t)||σ,

We turn our attention to the inner product of the second to last term in (85). We
integrate by parts over ∂pi

and apply Theorem 3 to the dq integral differentiated
by ∂β1 . Then this term is bounded by∫ ∣∣Θβ̄1

Φij(P,Q)
∣∣ J1/4(q)

∣∣∣∂α2∂
γ1
β̄2
fnk (q)

∣∣∣ ∣∣∣∂α2

(
∂γ−γ1
β̄3

fml (p)∂γβf
n+1
l (p)

)∣∣∣ dpdqdx,
where we sum over m ∈ {n, n+ 1}, β̄1 + β̄1 + β̄3 ≤ β, i, j ∈ {1, 2, 3}, k, l ∈ {+,−},
|α1| ≤ 1 |α2| ≤ 1 and γ1 ≤ γ. We remark that a few of these sum’s are over
estimates used to simplify the presentation. This term is always of the form of one
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of the four terms in (69)-(70) up to the location of one p derivative. Therefore, as
in the proof of Theorem 4, this term is bounded above by

C
(
|||fn+1|||σ|||fn|||σ|||fn|||+ |||fn|||2σ|||fn+1|||

)
+C

(
|||fn+1|||2σ|||fn|||+ |||fn+1|||σ|||fn|||σ|||fn+1|||

)
.

where the sum is over |γi| + |β̄i| ≤ N , β̄1 + β̄2 ≤ β. For the inner product of the
last term in (85). The null space in (2) implies∫

R3
Φij(P,Q)∂qiJ(q)dq =

∫
R3

Φij(P,Q)
qi
q0
J(q)dq = σij

pi
p0
.

Therefore (61) applies to the derivatives of the dq integral. Therefore, the inner
product of the last term in (85) is bounded by∫ ∣∣∣∂γ

β̄
fmk (p)∂γβf

n+1
k (p)

∣∣∣ dpdx,
where we sum over m ∈ {n, n+ 1}, |β̄| ≤ |β| and k ∈ {+,−}. This term is bounded
above by

C
(
|||fn+1|||2 + |||fn|||(t)|||fn+1|||

)
≤ C|||fn+1|||2 + C|||fn|||2.

By collecting all the above estimates, we obtain the following bound for our
iteration

1
2
d

dt

(
||∂γβf

n+1(t)||2 + ||∂γEn+1(t)||2 + ||∂γBn+1(t)||2
)

+ ||∂γβf
n+1(t)||2σ

≤ η|||fn+1(t)|||2σ + Cη‖∂γfn+1(t)‖2 + C{|||En|||+ |||En+1|||}|||fn+1|||
+C|||fn+1(t)|||2 + C{|||En|||+ |||Bn|||}|||fn+1|||2σ

+η|||fn|||2σ + η
∥∥∥∂γβfn+1

∥∥∥2

σ
+ Cη ‖∂γfn‖2

+C
{
|||fn+1|||σ|||fn||| + |||fn|||σ|||fn+1|||

}
|||fn+1|||σ

+C
(
|||fn+1|||σ|||fn|||σ|||fn|||+ |||fn|||2σ|||fn+1|||

)
+C|||fn+1|||2 + C|||fn|||2.

Summing over |γ|+ |β| ≤ N and choosing η ≤ 1
4 we have

E ′n+1(t) ≤ C{En+1(t) + En(t) + E1/2
n (t)|||fn+1|||2σ(t)(92)

+E1/2
n (t)|||fn|||σ(t)|||fn+1|||σ(t) + CE1/2

n+1(t)|||fn|||2σ(t)

+
1

4C
|||fn|||2σ + |||fn|||σ(t) · |||fn+1|||(t) · |||fn+1|||σ(t)}.

By the induction assumption, we have

1
2
|||fn|||2(t) + |||En|||2(t) + |||Bn|||2(t) +

∫ t

0

|||fn|||2σ(s)ds

= En(t) ≤ sup
0≤s≤t

En(s) ≤M0.
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Therefore, ∫ t

0

|||fn|||σ(s) · |||fn+1|||(s) · |||fn+1|||σ(s)ds

≤ sup
0≤s≤t

|||fn+1|||(s)
{∫ t

0

|||fn|||2σ(s)
}1/2{∫ t

0

|||fn+1|||2σ(s)
}1/2

≤
√
M0 sup

0≤s≤t
En+1(s).

Upon further integrating (92) over [0, t] we deduce

En+1(t) ≤ En+1(0) + C

(
t sup

0≤s≤t
En+1(s) +M0t+

√
M0En+1(t)

)
+
M0

4
+ CM0 sup

0≤s≤t
E1/2
n+1(s) + C

√
M0 sup

0≤s≤t
En+1(s),

and we will use the inequality

M0 sup
0≤s≤t

En+1(s) ≤M3/2
0 +

√
M0 sup

0≤s≤t
En+1(s).

From the initial conditions (n ≥ 0)

fn+1
0 ≡ fn+1(0, x, p) = f0(x, p)

En+1
0 ≡ En+1(0, x) = E0(x)

Bn+1
0 ≡ Bn+1(0, x) = B0(x),

we deduce that

∂γβf
n+1
0 = ∂γβf0, ∂

γEn+1
0 = ∂γE0, ∂

γBn+1
0 = ∂γB0

by a simple induction over the number of temporal derivatives, where the temporal
derivatives are defined naturally through (84). Hence

En+1(0) = En+1([fn+1
0 , En+1

0 , Bn+1
0 ]) ≡ E([f0, E0, B0]) ≤M0/2.

It follows that for t ≤ T ∗,

(1− CT ∗ − CM1/2
0 ) sup

0≤t≤T∗
En+1(t) ≤ En+1(0) + CM0T

∗ + CM
3/2
0 +

M0

4

≤ 3
4
M0 + CM0

(
T ∗ +

√
M0

)
.

We therefore conclude Lemma 9 if T ∗ ≤ M0
2 and M0 is small. �

In order to complete the proof of Theorem 6, we take n → ∞, and obtain a
solution f from Lemma 9. Now for uniqueness, we assume that there is another
solution [g,Eg, Bg], such that sup0≤s≤T∗ E(g(s)) ≤ M0 with f(0, x, p) = g(0, x, p),
Ef (0, x) = Eg(0, x) and Bf (0, x) = Bg(0, x). The difference [f−g,Ef−Eg, Bf−Bg]
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satisfies{
∂t +

p

p0
· ∇x + ξ

(
Ef +

p

p0
×Bf

)
· ∇p −A

}
(f − g)− (Ef − Eg) ·

p

p0

√
Jξ1

= −ξ
{
Ef − Eg +

p

p0
× (Bf −Bg)

}
∇pg +K(f − g)(93)

+ξ
{
Ef ·

p

p0

}
(f − g) + ξ

{
(Ef − Eg) ·

p

p0

}
g + Γ(f − g, f) + Γ(g, f − g);

∂t(Ef − Eg)−∇x × (Bf −Bg) = −
∫

p

p0

√
J{(f − g) · ξ1} ,

∇x · (Ef − Eg) =
∫ √

J{(f − g) · ξ1},

∂t(Bf −Bg) +∇x × (Ef − Eg) = 0, ∇x · (Bf −Bg) = 0.

By using the Cauchy-Schwarz inequality in the p−integration, and applying (90)
for supx

∫
|∇pg|2dp, we deduce (for N ≥ 4)∣∣∣∣(u{Ef − Eg +

p

p0
× (Bf −Bg)} · ∇pg, f − g

)∣∣∣∣
≤ C

∑
|γ|≤2

||∂γg||σ

 {||Ef − Eg||+ ||Bf −Bg||}||f − g||σ
≤ C

∑
|γ|≤2

||∂γg||2σ

 {||Ef − Eg||2 + ||Bf −Bg||2}+
1
4
||f − g||2σ

≤ C|||∂γg|||2{||Ef − Eg||2 + ||Bf −Bg||2}+
1
4
||f − g||2σ

≤ CM0{||Ef − Eg||2 + ||Bf −Bg||2}+
1
4
||f − g||2σ.

Similarly, we use the Sobolev embedding theorem as well as elementary inequalities
to estimate the terms below∣∣∣∣(Ef · pp0

(f − g), f − g
)∣∣∣∣ ≤ C

√
M0||f − g||2∣∣∣∣(u{Ef − Eg} · pp0

g, f − g
)∣∣∣∣ ≤ C||f − g||σ||Ef − Eg||

∑
|γ|≤2

||∂γg||σ

≤ 1
4
||f − g||2σ + CM0||Ef − Eg||2.

By Theorem 4 as well as (14),

|(Γ(f − g, f) + Γ(g, f − g), f − g)|
≤ C {‖f − g‖‖f‖σ + ‖f − g‖σ‖f‖+ ‖f − g‖‖g‖σ + ‖f − g‖σ‖g‖} ‖f − g‖σ
= C {‖f‖+ ‖g‖} ‖f − g‖2σ + C {‖f‖σ + ‖g‖σ} ‖f − g‖‖f − g‖σ

≤ C
√
M0‖f − g‖2σ + C

{
‖f‖2σ + ‖g‖2σ

}
‖f − g‖2 +

1
4
‖f − g‖2σ

≤ C
√
M0‖f − g‖2σ + CM0‖f − g‖2 +

1
4
‖f − g‖2σ
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From the Maxwell system in (93), we deduce from (88) that

−
(

2(Ef − Eg) · (p
√
J/p0)ξ1, f − g

)
=

d

dt
{||Ef − Eg||2 + ||Bf −Bg||2}.

By taking the inner product of (93) with f − g, and collecting above estimates as
well as plugging in the K and A estimates from Lemma 8, we have

d

dt

{
1
2
||f − g||2 + ||Ef − Eg||2 + ||Bf −Bg||2

}
+ ||f − g||2σ

≤ C{M0 +
√
M0 + 1}{||f − g||2 + ||Ef − Eg||2 + ||Bf −Bg||2}

+
(
C

m
+ C

√
M0 +

3
4

)
||f − g||2σ.

If we choose m and M0 so that C
m +C

√
M0 <

1
4 then the last term on the r.h.s. can

be absorbed by ||f − g||2σ from the right. We deduce f(t) ≡ g(t) from the Gronwall
inequality.

To show the continuity of E(f(t)) with respect to t, we have from (92) that as
t→ s

|E(t)− E(s)| ≤ CM0(t− s) + C

(
sup
s≤τ≤t

E1/2(τ) + 1
)∫ t

s

|||f |||2σ(τ)dτ → 0.

For the positivity of F = J + J1/2f , since fn solves (84), we see that Fn =
J + J1/2fn solves the iterating sequence (n ≥ 0):{

∂t +
p

p0
· ∇x + ξ

(
En +

p

p0
×Bn

)
· ∇p

}
Fn+1 = Cmod(Fn+1, Fn)

together with the coupled Maxwell system:

∂tE
n −∇x ×Bn = −J n = −

∫
R3

p

p0
{Fn+ − Fn−}dp,

∂tB
n +∇x × En = 0, ∇x ·Bn = 0,

∇x · En = ρn =
∫

R3
{Fn+ − Fn−}dp.

And, as in (84), the first step in the iteration is given through the initial data

F 0(t, x, p) = [F 0
+(t, x, p), F 0

−(t, x, p)] = [F0,+(x, p), F0,−(x, p)]

= [J + J1/2f0,+(x, p), J + J1/2f0,−(x, p)].

Above we have used the modification Cmod = [Cmod+ , Cmod− ] where

Cmod± (Fn+1, Fn) = ∂pi
∂pj

Fn+1
± (p)

∫
R3

Φij(P,Q)
(
Fn+ + Fn−

)
dq

+∂pj
Fn+1
± (p)

∫
R3
∂pi

Φij(P,Q)
(
Fn+ + Fn−

)
dq

−∂piF
n+1
± (p)

∫
R3

Φij(P,Q)∂qj

(
Fn+ + Fn−

)
dq

−Fn±(p)∂pi

∫
R3

Φij(P,Q)∂qj

(
Fn+ + Fn−

)
dq.

Since F 0(t, x, p) ≥ 0 Lemma 4, the elliptic structure of this iteration and the
maximum principle imply that Fn+1(t, x, p) ≥ 0 if Fn(t, x, p) ≥ 0. This implies
F (t, x, p) ≥ 0.
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Finally, since E(t) < +∞, [f, ∂2E, ∂2B] is bounded and continuous. By F =
J + J1/2f, it is straightforward to verify that classical mass, total mometum and
total energy conservations hold for such solutions constructed. We thus conclude
Theorem 6.

5. Positivity of the Linearized Landau Operator

We establish the positivity of the linear operator L for any small amplitude
solution [f(t, x, p), E(t, x), B(t, x)] to the full relativistic Landau-Maxwell system
(29) and (30). Recall the orthogonal projection Pf with coefficients a±, b and c
in (19). For solutions to the nonlinear system, Lemmas 11 and 12 are devoted to
basic estimates for the linear and nonlinear parts in the macroscopic equations. We
make the crucial observation in Lemma 13 that the electromagnetic field roughly
speaking is bounded by ||f ||σ(t) at any moment t. Then based on Lemma 10, we
finally establish Theorem 2 by a careful study of macroscopic equations coupled
with the Maxwell system.

We begin with a formal definition of the orthogonal projection P. Define

ρ0 =
∫

R3
J(p)dp, ρi =

∫
R3
p2
iJ(p)dp (i = 1, 2, 3),

ρ4 =
∫

R3
|p|2J(p)dp, ρ5 =

∫
R3
p0J(p)dp.

We can write an orthonormal basis for N in (15) with normalized constants as

ε∗1 = ρ
−1/2
0 [J1/2, 0], ε∗2 = ρ

−1/2
0 [0, J1/2],

ε∗i+2 = (2ρi)−1/2[piJ1/2, piJ
1/2] (i = 1, 2, 3), ε∗6 = c6

(
[p0, p0]− ρ5

ρ0
[1, 1]

)
J1/2

where c−2
6 = 2(ρ0 + ρ4) − 2ρ

2
5
ρ0

. Now consider Pf , f = [f+, f−], we define the
coefficients in (19) so that P is an orthogonal projection:

a+ ≡ ρ−1/2
0 〈f, ε∗1〉 −

ρ5
ρ0
c, a− ≡ ρ−1/2

0 〈f, ε∗2〉 −
ρ5
ρ0
c,

bj ≡ (2ρj)−1/2〈f, ε∗j+2〉, c ≡ c6〈f, ε∗6〉.(94)

Proposition 2. Let ∂γ = ∂γ0t ∂
γ1
x1
∂γ2x2

∂γ3x3
. There exists C > 1 such that

1
C
||∂γPf ||2σ ≤ ||∂γa±||2 + ||∂γb||2 + ||∂γc||2 ≤ C||∂γPf ||2.

For the rest of the section, we concentrate on a solution [f,E,B] to the nonlinear
relativistic Landau-Maxwell system.

Lemma 10. Let [f(t, x, p), E(t, x), B(t, x)] be the solution constructed in Theorem
6 to (29) and (30), which satisfies (31), (10), (11) and (12). Then we have

2
3
ρ4

∫
T3
b(t, x) =

∫
T3
B(t, x)× E(t, x),(95) ∣∣∣∣∫

T3
a+(t, x)

∣∣∣∣+
∣∣∣∣∫

T3
a−(t, x)

∣∣∣∣+
∣∣∣∣∫

T3
c(t, x)

∣∣∣∣ ≤ C
(
||E||2 + ||B − B̄||2

)
,(96)

where a = [a+, a−], b = [b1, b2, b3], c are defined in (94).
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Proof. We use the conservation of mass, momentum and energy. For fixed (t, x),
notice that (94) implies∫

p{f+ + f−}
√
Jdp =

2
3
b(t, x)

∫
|p|2Jdp.

Hence (95) follows from momentum conservation (11) with normalized constants.
On the other hand, for fixed (t, x), (94) implies∫

f±
√
Jdp = ρ0a±(t, x) + ρ5c(t, x),∫

p0{f+ + f−}
√
Jdp = ρ5{a+(t, x) + a−(t, x)}+ 2(ρ0 + ρ4)c(t, x),

Upon further integration over T3, we deduce from the mass conservation (10) that∫
T3 a+ =

∫
T3 a− = −ρ5ρ0

∫
T3 c. From the reduced energy conservation (12),

−
∫

T3
{|E(t)|2 + |B(t)− B̄|2} = 2

(
ρ0 + ρ4 −

ρ2
5

ρ0

)∫
T3
c.

By the sharp form of Holder’s inequality, (ρ0 + ρ4)ρ0 − ρ2
5 > 0.

�

We now derive the macroscopic equations for Pf ’s coefficients a±, b and c. Re-
calling equation (16) with (17) and (18) with normalized constants in (104) and
(105), we further use (19) to expand entries of l.h.s. of (16) as{

∂0a± +
pj
p0

{
∂ja± ∓ Ej

}
+
pjpi
p0

∂ibj + pj
{
∂0bj + ∂jc

}
+ p0∂

0c

}
J1/2(p)

where ∂0 = ∂t and ∂j = ∂xj . For fixed (t, x), this is an expansion of l.h.s. of (16)
with respect to the basis of (1 ≤ i, j ≤ 3)

[
√
J, 0], [0,

√
J ], [pj

√
J/p0, 0], [0, pj

√
J/p0],

[pj
√
J, pj

√
J ], [pjpi

√
J/p0, pjpi

√
J/p0], [p0

√
J, p0

√
J ](97)

Expanding the r.h.s. of (16) with respect to the same basis (97) and compar-
ing coefficients on both sides, we obtain the important macroscopic equations for
a(t, x) = [a+(t, x), a−(t, x)], bi(t, x) and c(t, x):

∂0c = lc + hc,(98)

∂ic+ ∂0bi = li + hi,(99)

(1− δij)∂ibj + ∂jbi = lij + hij ,(100)

∂ia± ∓ Ei = l±ai + h±ai,(101)

∂0a± = l±a + h±a .(102)

Here lc(t, x), li(t, x), lij(t, x), l±ai(t, x) and l±a (t, x) are the corresponding coefficients
of such an expansion of the linear term l({I−P}f), and hc(t, x), hi(t, x), hij(t, x),
h±ai(t, x) and h±a (t, x) are the corresponding coefficients of the same expansion of
the higher order term h(f).
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From (19) and (94) we see that∫
[p
√
J/p0,−p

√
J/p0] ·Pfdp = 0,∫

[
√
J,−
√
J ] · fdp = ρ0{a+ − a−}.

We plug this into the coupled maxwell system, (30) and (31), to obtain

∂tE −∇x ×B = −J =
∫

R3
[p
√
J/p0,−p

√
J/p0] · {I−P}fdp,(103)

∂tB +∇x × E = 0, ∇x · E = ρ0{a+ − a−}, ∇x ·B = 0.

We rewrite the terms (17) and (18) in (16) with normalized constants as

l({I−P}f) ≡ −
{
∂t +

p

p0
· ∇x + L

}
{I−P}f,(104)

h(f) ≡ −ξ
(
E +

p

p0
×B

)
· ∇pf +

ξ

2

{
E · p

p0

}
f + Γ(f, f).(105)

Next, we estimate these terms.

Lemma 11. For any 1 ≤ i, j ≤ 3,∑
|γ|≤N−1

||∂γ lc||+ ||∂γ li||+ ||∂γ lij ||+ ||∂γ l±ai||+ ||∂
γ l±a ||+ ||∂γJ ||

≤ C
∑
|γ|≤N

‖{I−P}∂γf‖.

Proof. Let {εn(p)} represent the basis in (97). For fixed (t, x), we can use the
Gram-Schmidt procedure to argue that the terms lc(t, x), li(t, x), lij(t, x), l±ai(t, x)
and l±a (t, x) are of the form

18∑
n=1

c̄n〈l({I−P}f), εn〉,

where cn are constants which do not depend on on f . Let |γ| ≤ N − 1. By (104)∫
∂γ l({I−P}f) · εn(p)dp = −

∫ {
∂t +

p

p0
· ∇x + L

}
{I−P}∂γf(p) · εn(p)dp.

We estimate the first two terms,

‖
∫
{∂t +

p

p0
· ∇x}({I−P}∂γf) · εndp‖2

≤ 2
∫
|εn|dp×

∫
T3×R3

|εn(p)|(|{I−P}∂0∂γf |2 + |{I−P}∇x∂γf |2)dpdx

≤ C
(
||{I−P}∂0∂γf ||2 + ||{I−P}∇x∂γf ||2

)
.

Similarly, we have

||∂γJ || = ||
∫

R3
[−p
√
J/p0, p

√
J/p0] · {I−P}∂γfdp|| ≤ C||{I−P}∂γf ||.

Using (72) we can estimate the last term

‖〈L{I−P}∂γf, εn〉‖ ≤ C‖{I−P}∂γf‖.
Indeed (72) was designed to estimate this term. �
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We now estimate coefficients of the higher order term h(f).

Lemma 12. Let (14) be valid for some M0 > 0. Then∑
|γ|≤N

{||∂γhc||+ ||∂γhi||+ ||∂γhij ||+ ||∂γh±ai||+ ||∂
γh±a ||} ≤ C

√
M0

∑
|γ|≤N

||∂γf ||σ.

Proof. Let |γ| ≤ N , recall that {εn(p)} represents the basis in (97). Notice that
∂γhc, ∂

γhi, ∂
γhij , ∂

γh±ai and ∂γh±a are again of the form
18∑
n=1

c̃n〈∂γh(f), εn〉.

It again suffices to estimate 〈∂γh(f), εn〉. For the first term of h(f) in (105), we
use an integration by parts over the p variables to get

−
∫
∂γ{ξ(E +

p

p0
×B) · ∇pf)} · εn(p)dp

= −
∑

Cγ1γ

∫
∇p · {ξ(∂γ1E +

p

p0
× ∂γ1B)∂γ−γ1f} · εn(p)dp

=
∑

Cγ1γ

∫
ξ(∂γ1E +

p

p0
× ∂γ1B)∂γ−γ1f · ∇pεn(p)dp

≤ C
∑
{|∂γ1E|+ |∂γ1B|}

{∫
|∂γ−γ1f |2dp

}1/2

.

The last estimate holds because ∇pεn(p) has exponential decay. Take the square
of the above, whose further integration over T3 is bounded by

(106) C

∫
T3
{|∂γ1E|+ |∂γ1B|}2

{∫
|∂γ−γ1f |2dp

}
dx.

If |γ1| ≤ N/2, by H2(T3) ⊂ L∞(T3) and the small amplitude assumption (14), we
have

sup
x
{|∂γ1E|+ |∂γ1B|} ≤ C

∑
|γ|≤N

{||∂γE(t)||+ ||∂γB(t)||} ≤ C
√
M0.

If |γ1| ≥ N/2 then
∫

T3{|∂γ1E|+ |∂γ1B|}2dx ≤M0 and, by (90),

sup
x

{∫
|∂γ−γ1f |2dp

}
≤ C

∑
|γ|≤N

||∂γf(t)||2.

We thus conclude that (106) is bounded by C
√
M0

∑
|γ|≤N ||∂γf ||.

The second term of h(f) in (105) is easily treated by the same argument, for∫
ξ

2
∂γ{(E · p

p0
)f} · εn(p)dp

=
∑

Cγ1γ

∫
{ξ

2
(∂γ1E · p

p0
)∂γ−γ1f} · εn(p)dp

≤ C
∑
|∂γ1E|

{∫
|∂γ−γ1f |2dp

}1/2

.

For the third term of h(f) in (105) we apply (71):

‖〈∂γΓ(f, f), εn〉‖ ≤ C
∑
|γ|≤N

||∂γf(t)||
∑
|γ|≤N

||∂γf(t)||σ ≤ C
√
M0

∑
|γ|≤N

||∂γf ||σ.
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We designed (71) to estimate this term. �

Next we estimate the electromagnetic field [E(t, x), B(t, x)] in terms of f(t, x, p)
through the macroscopic equation (101) and the Maxwell system (103).

Lemma 13. Let [f(t, x, p), E(t, x), B(t, x)] be the solution to (29), (30) and (31)
constructed in Theorem 6. Let the small amplitude assumption (14) be valid for
some M0 > 0. Then there is a constant C > 0 such that∑
|γ|≤N−1

{||∂γE(t)||+ ||∂γ{B(t)− B̄}||} ≤ C
∑
|γ|≤N

(
||∂γf(t)||+

√
M0||∂γf(t)||σ

)
.

Proof. We first use the plus part of the macroscopic equation (101) to estimate the
electric field E(t, x) :

−∂γEi = ∂γ l+ai + ∂γh+
ai − ∂

γ∂ia+.

Proposition 2 says ||∂γ∂ia+|| ≤ C||P∂γ∂if ||. Applying Lemmas’ 11 and 12 to ∂γ l+ai
and ∂γh+

ai respectively, we deduce that for |γ| ≤ N − 1,

(107) ||∂γE|| ≤ C
∑
|γ′|≤N

(
||∂γ

′
f(t)||+

√
M0||∂γ

′
f(t)||σ

)
.

We next estimate the magnetic field B(t, x). Let |γ| ≤ N − 2. Taking ∂γ to the
Maxwell system (103) we obtain

∇x × ∂γB = ∂γJ + ∂t∂
γE, ∇x · ∂γB = 0.

Lemma 11, (107) as well as
∫
|∇ × ∂γB|2 + (∇ · ∂γB)2dx =

∫ ∑
i,j(∂xi

∂γBj)2dx
imply

||∇∂γB|| ≤ C{||∂γJ ||+ ||∂t∂γE||} ≤ C
∑
|γ′|≤N

(
||∂γ

′
f(t)||+

√
M0||∂γ

′
f(t)||σ

)
By ∂t∂

γB + ∇ × ∂γE = 0, ||∂t∂γB|| ≤ ||∇ × ∂γE||. Finally, by the Poincaré
inequality ||B − B̄|| ≤ C||∇B||, we therefore conclude our Lemma. �

We now prove the crucial positivity of L for a small solution [f(t, x, p), E(t, x), B(t, x)]
to the relativistic Landau-Maxwell system. The conservation laws (10), (11) and
(12) play an important role.

Proof of Theorem 2. From (77) we have

(L∂γf, ∂γf) ≥ δ||{I−P}∂γf ||2σ.

By Proposition 2, we need only establish (20). The rest of the proof is devoted to
establishing ∑

|γ|≤N

{||∂γa±||+ ||∂γb||+ ||∂γc||}

≤ C
∑
|γ|≤N

||{I−P}∂γf(t)||+ C
√
M0

∑
|γ|≤N

||∂γf(t)||σ,(108)
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This is sufficient to prove the upper bound in (20) because the second term on the
r.h.s. can be neglected for M0 small:∑
|γ|≤N

||∂γf(t)||σ ≤
∑
|γ|≤N

||P∂γf(t)||σ +
∑
|γ|≤N

||{I−P}∂γf(t)||σ

≤ C
∑
|γ|≤N

(||∂γa±||+ ||∂γb||+ ||∂γc||) +
∑
|γ|≤N

||{I−P}∂γf(t)||σ.

We will estimate each of the terms a±, b and c in (108) one at a time.
We first estimate ∇∂γb. Let |γ| ≤ N − 1. From (100)

∆∂γbj + ∂j(∇ · ∂γb) =
∑
i

∂i
(
∂γ∂ibj + ∂γ∂jbi

)
=
∑
i

∂i∂γ (lij + hij) (1 + δij)

Multiplying with ∂γbj and summing over j yields:∫
T3

(∇ · ∂γb)2 +
∑
i,j

(
∂i∂γbj

)2 dx

=
∑
i,j

∫
T3

(∂γ lij + ∂γhij) (1 + δij)∂i∂γbjdx.

Therefore ∑
i,j

||∂i∂γbj ||2 ≤ C

∑
i,j

||∂i∂γbj ||

∑{||∂γ lij ||+ ||∂γhij ||},
which implies, using

(∑
i,j ||∂i∂γbj ||

)2

≤ C
∑
i,j ||∂i∂γbj ||2, that

(109)
∑
i,j

||∂i∂γbj || ≤ C
∑
{||∂γ lij ||+ ||∂γhij ||}.

This is bounded by the r.h.s. of (108) by Lemmas 11 and 12. We estimate purely
temporal derivatives of bi(t, x) with γ = [γ0, 0, 0, 0] and 0 < γ0 ≤ N −1. From (98)
and (99), we have

∂0∂γbi = ∂γ li + ∂γhi − ∂i∂γc
= ∂γ li + ∂γhi − ∂γ

′
∂0c

= ∂γ li + ∂γhi − ∂γ
′
lc − ∂γ

′
hc,

where |γ′| = γ0. Therefore,

‖∂0∂γbi‖ ≤ C
(
‖∂γ li‖+ ‖∂γhi‖+ ‖∂γ

′
lc‖+ ‖∂γ

′
hc‖
)
.

By Lemmas 11 and 12, this is bounded by the r.h.s. of (108). Next, assume
0 ≤ γ0 ≤ 1. We use the Poincaré inequality and (95) to obtain

||∂γ
0

t bi|| ≤ C

{
||∇∂γ

0

t bi||+
∣∣∣∣∂γ0

t

∫
bi(t, x)dx

∣∣∣∣}
= C

{
||∇∂γ

0

t bi||+
∣∣∣∣∂γ0

t

∫
E ×Bdx

∣∣∣∣} .
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By (109), it suffices to estimate the last term above. From Lemma 13 and the
assumption (14), with M0 ≤ 1, the last term is bounded by

||∂γ
0

t B|| · ||E||+ ||B|| · ||∂γ
0

t E||

≤
√
M0C

∑
|γ|≤N

(
||∂γf(t)||+

√
M0||∂γf(t)||σ

)
≤ C

√
M0

∑
|γ|≤N

||∂γf(t)||σ.

We thus conclude the case for b.
Now for c(t, x), from (98) and (99),

||∂0∂γc|| ≤ C{||∂γ lc||+ ||∂γhc||},
||∇∂γc|| ≤ C||∂0∂γbi||+ ||∂γ li||+ ||∂γhi||.

Thus, for |γ| ≤ N − 1, both ||∂0∂γc|| and ||∇∂γc|| are bounded by the r.h.s. of
(108) by the above argument for b and Lemmas 11 and 12. Next, to estimate c(t, x)
itself, from the Poincaré inequality and Lemma 10

||c|| ≤ C

{
||∇c||+

∣∣∣∣∫ cdx

∣∣∣∣}
≤ C{||∇c||+ ||E||2 + ||B − B̄||2}.

Notice that from (3) and Jensen’s inequality |B̄| ≤ ‖B‖. Using this, Lemma 13 and
(14), with M0 ≤ 1, imply

||E||2 + ||B − B̄||2 ≤ ||E||2 + C||B − B̄||(||B||+ ||B̄||) ≤ C
√
M0

∑
|γ|≤N

||∂γf(t)||σ.

We thus complete the estimate for c(t, x) in (108).
Now we consider a(t, x) = [a+(t, x), a−(t, x)]. By (102),

||∂t∂γa±|| ≤ C
{
||∂γ l±a ||+ ||∂γh±a ||

}
.

We now use Lemma 11 and 12, for |γ| ≤ N − 1, to say that ||∂t∂γa|| is bounded
by the r.h.s. of (108). We now turn to purely spatial derivatives of a(t, x). Let
|γ| ≤ N − 1 and γ = [0, γ1, γ2, γ3] 6= 0. By taking ∂i of (101) and summing over i
we get

(110) −∆∂γa± ±∇ · ∂γE = −
∑
i

∂i∂γ{l±ai + h±ai}.

But from the Maxwell system in (103),

∇ · ∂γE = ρ0(∂γa+ − ∂γa−).

Multiply (110) with ∂γa± so that the ± terms are the same and integrate over T3.
By adding the ± terms together we have

||∇∂γa+||2 + ||∇∂γa−||2 + ρ0||∂γa+ − ∂γa−||2

≤ C{||∇∂γa+||+ ||∇∂γa−||}
∑
±
||∂γ{l±bi + h±bi}||.
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Therefore, ||∇∂γa+||+ ||∇∂γa−|| ≤
∑
± ||∂γ{l

±
bi + h±bi}||. Since γ is purely spatial,

this is bounded by the r.h.s of (108) because of Lemmas 11 and 12. Furthermore,
by the Poincaré inequality and Lemma 10, a itself is bounded by

||a±|| ≤ C||∇a±||+ C

∣∣∣∣∫ a±dx

∣∣∣∣
≤ C||∇a±||+ C{||E||2 + ||B − B̄||2},

which is bounded by the r.h.s. of (108) by the same argument as for c. We thus
complete the estimate for a(t, x) and our theorem follows.

6. Global Solutions

In this section we establish Theorem 1. We first derive a refined energy estimate
for the relativistic Landau-Maxwell system.

Lemma 14. Let [f(t, x, p), E(t, x), B(t, x)] be the unique solution constructed in
Theorem 6 which also satisfies the conservation laws (10), (11) and (12). Let the
small amplitude assumption (14) be valid. For any given 0 ≤ m ≤ N, |β| ≤ m,
there are constants C|β| > 0, C∗m > 0 and δm > 0 such that∑

|β|≤m,|γ|+|β|≤N

1
2
d

dt
C|β|||∂γβf(t)||2 +

1
2
d

dt
|||[E,B]|||2(t)

+
∑

|β|≤m,|γ|+|β|≤N

δm||∂γβf(t)||2σ ≤ C∗m
√
E(t)|||f |||2σ(t).(111)

Proof. We use an induction over m, the order of the p−derivatives. For m = 0, by
taking the pure ∂γ derivatives of (29), we obtain:{

∂t +
p

p0
· ∇x + ξ

(
E +

p

p0
×B

)
· ∇p

}
∂γf

−
{
∂γE · p

p0

}√
Jξ1 + L{∂γf}(112)

= −
∑
γ1 6=0

Cγ1γ ξ

(
∂γ1E +

p

p0
× ∂γ1B

)
· ∇p∂γ−γ1f

+
∑
γ1≤γ

Cγ1γ

{
ξ

2

{
∂γ1E · p

p0

}
∂γ−γ1f + Γ(∂γ1f,∂γ−γ1f)

}
Using the same argument as (88),

−〈∂γE · {p
√
J/p0}ξ1, ∂γf〉 =

1
2
d

dt

{
||∂γE(t)||2 + ||∂γB(t)||2

}
.

Take the inner product of ∂γf with (112), sum over |γ| ≤ N and apply Theorem 2
to L{∂γf} to deduce the following for some constant C > 0,∑

|γ|≤N

1
2
d

dt

(
||∂γf(t)||2 + ||∂γE(t)||2 + ||∂γB(t)||2

)
+ δ0

∑
|γ|≤N

||∂γf(t)||2σ

≤ C{|||f |||(t) + |||[E,B]|||(t)}|||f |||2σ(t) ≤ C
√
E(t)|||f |||2σ(t).

We have used estimates (89-91) and Theorem 4 to bound the r.h.s. of (112). This
concludes the case for m = 0 with C0 = 1 and C∗0 = C.
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Now assume the Lemma is valid for m. For |β| = m + 1, taking ∂γβ(β 6= 0) of
(29), we obtain:

{
∂t +

p

p0
· ∇x + ξ

(
E +

p

p0
×B

)
· ∇p

}
∂γβf − ∂

γE · ∂β
{
p

p0

√
J

}
ξ1

+∂β{L∂γf}+
∑
β1 6=0

Cβ1
β ∂β1

(
p

p0

)
· ∇x∂γβ−β1

f(113)

=
∑

Cγ1γ C
β1
β

ξ

2

{
∂γ1E · ∂β1

(
p

p0

)}
∂γ−γ1β−β1

f −
∑
γ1 6=0

Cγ1γ ξ∂
γ1E · ∇p∂γ−γ1β f

−
∑

(γ1,β1)6=(0,0)

Cγ1γ C
β1
β ξ∂β1

(
p

p0

)
× ∂γ1B · ∇p∂γ−γ1β−β1

f

+
∑

Cγ1γ ∂βΓ(∂γ1f,∂γ−γ1f).

We take the inner product of (113) over T3×R3 with ∂γβf . The first inner product
on the left is equal to 1

2
d
dt ||∂

γ
βf(t)||2. Now |γ| ≤ N − 1 (since |β| = m + 1 > 0),

Lemma 13, (60) and M0 ≤ 1 imply (after an integration by parts) that the second
inner product on l.h.s. is bounded by

〈∂γE · ∂β{p
√
J/p0}ξ1, ∂γβf〉 ≤ C||∂

γE|| · ||∂γf || ≤ C||∂γf ||
∑
|γ′|≤N

||∂γ
′
f ||σ.

From Lemma 7 and Cauchy’s inequality we deduce that, for any η > 0, the inner
product of third term on l.h.s. is bounded from below as

(
∂β{L∂γf}, ∂γβf

)
≥ ||∂γβf ||

2
σ − η

∑
|β̄|≤|β|

||∂γ
β̄
f ||2σ − Cη||∂γf ||2.

Using Cauchy’s inequality again, the the inner product of the last term on l.h.s. of
(113) is bounded by

η||∂γβf(t)||2 + Cη
∑
|β1|≥1

||∇x∂γβ−β1
f ||2.

By the same estimates, (89-91) and Theorem 4, all the inner products in r.h.s.
of (113) are bounded by C

√
E(t)|||f |||2σ(t). Collecting terms and summing over

|β| = m + 1 and |γ| + |β| ≤ N , we split the highest order p-derivatives from the
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lower order derivatives to obtain∑
|β|=m+1,|γ|+|β|≤N

{
1
2
d

dt
||∂γβf(t)||2 + ||∂γβf(t)||2σ

}

≤
∑

|β|=m+1,|γ|+|β|≤N

 ∑
|β|=m+1

2η||∂γβf(t)||2σ + C
√
E(t)|||f |||2σ(t)


+

∑
|β|=m+1,|γ|+|β|≤N

(C + 2Cη)
∑

|β|≤m,|γ|+|β|≤N

||∂γβf(t)||2σ

≤ Zm+1

 ∑
|β|=m+1,|γ|+|β|≤N

2η||∂γβf(t)||2σ + C
√
E(t)|||f |||2σ(t)


+Zm+1(C + 2Cη)

∑
|β|≤m,|γ|+|β|≤N

||∂γβf(t)||2σ.

Here Zm+1 denotes the number of all possible (γ, β) such that |β| ≤ m+1, |γ|+|β| ≤
N . By choosing η = 1

4Zm+1
, and absorbing the first term on the r.h.s. by the second

term on the left, we have, for some constant C(Zm+1),∑
|β|=m+1,|γ|+|β|≤N

{
1
2
d

dt
||∂γβf(t)||2 +

1
2
||∂γβf(t)||2σ

}

≤ C(Zm+1)

 ∑
|β|≤m,|γ|+|β|≤N

||∂γβf(t)||2σ +
√
E(t)|||f |||2σ(t)

 .(114)

We may assume C(Zm+1) ≥ 1. We multiply (114) by δm

2C(Zm+1) and add it to (111)
for |β| ≤ m to get∑

|β|=m+1,|γ|+|β|≤N

{
δm

4C(Zm+1)
d

dt
||∂γβf(t)||2 +

δm
4C(Zm+1)

||∂γβf(t)||2σ
}

+
∑

|β|≤m,|γ|+|β|≤N

1
2
d

dt

(
C|β|||∂γβf(t)||2 + ||∂γE(t)||2 + ||∂γB(t)||2

)
+

∑
|β|≤m,|γ|+|β|≤N

δm||∂γβf(t)||2σ

≤ δm
2

∑
|β|≤m,|γ|+|β|≤N

||∂γβf(t)||2σ +
{
C∗m +

δm
2

}√
E(t)|||f |||2σ(t).

Absorb the first term on the right by the last term on the left. We conclude our
lemma by choosing

Cm+1 =
δm

4C(Zm+1)
, δm+1 =

δm
4C(Zm+1)

≤ δm
2
, C∗m+1 = C∗m +

δm
2
.

Nothing that C(Zm+1) > C(Zm) and δm < δm−1. �

We are ready to construct global in time solutions to the relativistic Landau-
Maxwell system (29) and (30).
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Proof of Theorem 1: We first fix M0 ≤ 1 such that both Theorems 2 and 6 are
valid. For such an M0, we let m = N in (111), and define

y(t) ≡
∑

|γ|+|β|≤N

C|β|||∂γβf(t)||2 + |||[E,B]|||2(t).

We choose a constant C1 > 1 such that for any t ≥ 0,

1
C1

{
y(t) +

δN
2

∫ t

0

|||f |||2σ(s)ds
}
≤ E(t)

E(t) ≤ C1

{
y(t) +

δN
2

∫ t

0

|||f |||2σ(s)ds
}
.

Recall constant C∗N in (111). We define

M ≡ min
{

δ2
N

8C∗2N C
2
1

,
M0

2C2
1

}
,

and choose initial data so that E(0) ≤ M < M0. From Theorem 6, we may denote
T > 0 so that

T = sup
t
{t : E(t) ≤ 2C2

1M} > 0.

Notice that, for 0 ≤ t ≤ T, E(t) ≤ 2C2
1M ≤ M0 so that the small amplitude

assumption (14) is valid. We now apply Lemma 14 and the definitions of M and
T , with 0 ≤ t ≤ T , to get

y′(t) + δN |||f |||2σ(t)

≤ C∗N
√
E(t)|||f |||2σ(t) ≤ C∗NC1

√
2M |||f |||2σ(t)

≤ δN
2
|||f |||2σ(t).

Therefore, an integration in t over 0 ≤ t ≤ s < T yields

E(s) ≤ C1

{
y(s) +

δN
2

∫ s

0

|||f |||2σ(τ)dτ
}
≤ C1y(0)

≤ C2
1E(0)(115)

≤ C2
1M < 2C2

1M.

Since E(s) is continuous in s, this implies E(T ) ≤ C2
1M if T < ∞. This implies

T = ∞. Furthermore, such a global solution satisfies E(t) ≤ C2
1E(0) for all t ≥ 0

from (115). Q.E.D.
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