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Syllabus

1. Probability theory. The following material will not be covered in class.
I am assuming familiarity with this material (from Stat 430). I will
hand out notes regarding this material for those of you who are rusty,
or for those of you who have not taken a probability course but think
that you can become comfortable with this material.

(a) Probability spaces and random variables.

(b) Basic probability distributions.

(c) Expectation and variance, moments.

(d) Bivariate distributions.

(e) Conditional probability.

2. Derivatives.

(a) What is a derivative security?

(b) Types of derivatives.

(c) The basic problem: How much should I pay for an option? Fair
price.

(d) Expectation pricing. Einstein and Bachelier, what they knew
about derivative pricing. And what they didn’t know.

(e) Arbitrage and no arbitrage. The simple case of futures. Arbitrage
arguments.

(f) The arbitrage theorem.

(g) Arbitrage pricing and hedging.

3. Discrete time stochastic processes and pricing models.

(a) Binomial methods without much math. Arbitrage and reassigning
probabilities.
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(b) A first look at martingales.

(c) Stochastic processes, discrete in time.

(d) Conditional expectations.

(e) Random walks.

(f) Change of probabilities.

(g) Martingales.

(h) Martingale representation theorem.

(i) Pricing a derivative and hedging portfolios.

(j) Martingale approach to dynamic asset allocation.

4. Continuous time processes. Their connection to PDE.

(a) Wiener processes.

(b) Stochastic integration..

(c) Stochastic di↵erential equations and Ito’s lemma.

(d) Black-Scholes model.

(e) Derivation of the Black-Scholes Partial Di↵erential Equation.

(f) Solving the Black Scholes equation. Comparison with martingale
method.

(g) Optimal portfolio selection.

5. Finer structure of financial time series.
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Chapter 1

Basic Probability

The basic concept in probability theory is that of a random variable. A
random variable is a function of the basic outcomes in a probability space.
To define a probability space one needs three ingredients:

1. A sample space, that is a set S of “outcomes” for some experiment.
This is the set of all “basic” things that can happen. This set can be
a discrete set (such as the set of 5-card poker hands, or the possible
outcomes of rolling two dice) or it can be a continuous set (such as an
interval of the real number line for measuring temperature, etc).

2. A sigma-algebra (or �-algebra) of subsets of S. This means a set ⌦ of
subsets of S (so ⌦ itself is a subset of the power set P(S) of all subsets
of S) that contains the empty set, contains S itself, and is closed under
countable intersections and countable unions. That is when E

j

2 ⌦,
for j = 1, 2, 3, . . . is a sequence of subsets in ⌦, then

1[

j=1

E
j

2 ⌦

and
1\

j=1

E
j

2 ⌦

In addition, if E 2 ⌦ then its complement is too, that is we assume
Ec 2 ⌦

7



8 CHAPTER 1. BASIC PROBABILITY

The above definition is not central to our approach of probability but it
is an essential part of the measure theoretic foundations of probability
theory. So we include the definition for completeness and in case you
come across the term in the future.

When the basic set S is finite (or countably infinite), then ⌦ is often
taken to be all subsets of S. As a technical point (that you should
probably ignore), when S is a continuous subset of the real line, this
is not possible, and one usually restricts attention to the set of subsets
that can be obtained by starting with all open intervals and taking
intersections and unions (countable) of them – the so-called Borel sets
[or more generally, Lebesgue measurable subsets of S). ⌦ is the collec-
tion of sets to which we will assign probabilities and you should think
of them as the possible events. In fact, we will most often call them
events.

3. A function P from ⌦ to the real numbers that assigns probabilities to
events. The function P must have the properties that:

(a) P (S) = 1, P (;) = 0.

(b) 0  P (A)  1 for every A 2 ⌦
(c) If A

i

, i = 1, 2, 3, . . . is a countable (finite or infinite) collection of
disjoint sets (i.e., A

i

\ A
j

= ; for all i di↵erent from j), then
P ([A

i

)) =
P

P (A
i

).

These axioms imply that if Ac is the complement of A, then P (Ac) =
1� P (A), and the principle of inclusion and exclusion: P (A [B) = P (A) +
P (B)� P (A \B), even if A and B are not disjoint.

General probability spaces are a bit abstract and can be hard to deal
with. One of the purposes of random variables, is to bring things back to
something we are more familiar with. As mentioned above, a random variable
is a function X on a probability space (S,⌦, P ) is a function that to every
outcome s 2 S gives a real number X(s) 2 R. For a subset A ⇢ R let’s
define X�1(A) to be the following subset of S:

X�1(A) = {s 2 S|X(s) 2 A}

It may take a while to get used to what X�1(A) means, but do not think of
X�1 as a function. In order for X�1 to be a function we would need X to be
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one-one, which we are not assuming. X�1(A) is just a subset of S as defined
above. The point of this definition is that if A ⇢ R then X�1(A) ⇢ S,
that is X�1(A) is the event that X of the outcome will be in A. If for
A = (a, b) ⇢ R an inverval, X�1(A) 2 ⌦ (this is a techinical assumption on
X, called measurability, and should really be part of the definition of random
variable.) then we can define P

X

(A) = P (X�1(A)).

Proposition 1.0.1. P
X

is a probability function on R.

So we have in some sense transferred the probability function to the real
line. P

X

is called the probability density of the random variable X.
In practice, it is the probability density that we deal with and mention

of (S,⌦, P ) is omitted. They are lurking somewhere in the background.

1.0.1 Discrete Random Variables

These take on only isolated (discrete) values, such as when you are counting
something. Usually, but not always, the values of a discrete random variable
X are (subset of the) integers, and we can assign a probability to any subset
of the sample space, as soon as we know the probability of any set containing
one element, i.e., P ({X = k}) for all k. It will be useful to write p(k) =
P ({X = k}) — set p(k) = 0 for all numbers not in the sample space. p(k)
is called the probability density function (or pdf for short) of X. We repeat,
for discrete random variables, the value p(k) represents the probability that
the event {X = k} occurs. So any function from the integers to the (real)
interval [0, 1] that has the property that

1X

k=�1

p(k) = 1

defines a discrete probability distribution.

1.0.2 Finite Discrete Random Variables

1. Uniform distribution – This is often encountered, e.g., coin flips, rolls
of a single die, other games of chance: S is the set of whole numbers
from a to b (this is a set with b � a + 1 elements!), ⌦ is the set of all
subsets of S, and P is defined by giving its values on all sets consisting
of one element each (since then the rule for disjoint unions takes over
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to calculate the probability on other sets). “Uniform” means that the
same value is assigned to each one-element set. Since P (S) = 1, the
value that must be assigned to each one element set is 1/(b� a + 1).

For example, the possible outcomes of rolling one die are {1}, {2}, {3}, {4}, {5}
and {6}. Each of these outcomes has the same probability, namely
1/6. We can express this by making a table, or specifying a function
f(k) = 1/6 for all k = 1, 2, 3, 4, 5, 6 and f(k) = 0 otherwise. Using
the disjoint union rule, we find for example that P ({1, 2, 5}) = 1/2,
P ({2, 3}) = 1/3, etc..

2. Binomial distribution – flip n fair coins, how many come up heads?
i.e., what is the probability that k of them come up heads? Or do a
sample in a population that favors the Democrat over the Republican
60 percent to 40 percent. What is the probability that in a sample of
size 100, more than 45 will favor the Republican?

The sample space S is 0, 1, 2, ....n since these are the possible outcomes
(number of heads, number of people favoring the Republican [n=100
in this case]). As before, the sigma algebra ⌦ is the set of all subsets
of S. The function P is more interesting this time:

P ({k}) =

�
n

k

�

2n

where n

k

is the binomial coe�cient

⇣n

k

⌘
=

n!

k!(n� k)!

which equals the number of subsets of an n-element set that have ex-
actly k elements.

1.0.3 Infinite Discrete Random Variables

3. Poisson distribution (with parameter ↵) – this arises as the number of
(random) events of some kind (such as people lining up at a bank, or
Geiger-counter clicks, or telephone calls arriving) per unit time. The
sample space S is the set of all nonnegative integers S = 0, 1, 2, 3, ....,
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and again ⌦ is the set of all subsets of S. The probability function on
⌦ is derived from:

P ({k}) = e�↵

↵k

k!
Note that this is an honest probability function, since we will have

P (S) = P ([1
k=1

{k}) =
1X

k=1

e�↵

↵k

k!
= e�↵

1X

k=1

↵k

k!
= e�↵e↵ = 1

1.0.4 Continuous Random Variables

A continuous random variable can take on only any real values, such as when
you are measuring something. Usually the values are (subset of the) reals,
and for technical reasons, we can only assign a probability to certain subsets
of the sample space (but there are a lot of them). These subsets, either
the collection of Borel sets ((sets that can be obtained by taking countable
unions and intersections of intervals)) or Lebesgue-measurable sets ((Borels
plus a some other exotic sets)) comprise the set ⌦. As soon as we know the
probability of any interval, i.e., P ([a, b]) for all a and b, we can calculate the
probabililty of any Borel set. Recall that in the discrete case, the probabilities
were determined once we knew the probabilities of individual outcomes. That
is P was determined by p(k). In the continuous case, the probability of a
single outcome is always 0, P ({x}) = 0. However, it is enough to know
the probabilities of “very small” intervals of the form [x, x + dx], and we
can calculate continuous probabilities as integrals of “probability density
functions”, so-called pdf’s. We think of dx as a very small number and then
taking its limit at 0. Thus, in the continuous case, the pdf is

p(x) = lim
dx!0

1

dx
P ([x, x + dx])

so that

P [a, b] =

Z
b

a

p(x)dx (1.0.1)

This is really the defining equation of the continuous pdf and I can not stress
too strongly how much you need to use this. Any function p(x) that takes
on only positive values (they don’t have to be between 0 and 1 though), and
whose integral over the whole sample space (we can use the whole real line
if we assign the value p(x) = 0 for points x outside the sample space) is
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equal to 1 can be a pdf. In this case, we have (for small dx) that p(x)dx
represents (approximately) the probability of the set (interval) [x, x + dx]
(with error that goes to zero faster than dx does). More generally, we have
the probability of the set (interval) [a, b] is:

p([a, b]) =

Z
b

a

p(x) dx

So any nonnegative function on the real numbers that has the property that

Z 1

�1
p(x) dx = 1

defines a continuous probability distribution.

Uniform distribution

As with the discrete uniform distribution, the variable takes on values in
some interval [a, b] and all variables are equally likely. In other words, all
small intervals [x, x + dx] are equally likely as long as dx is fixed and only
x varies. That means that p(x) should be a constant for x between a and
b, and zero outside the interval [a, b]. What constant? Well, to have the
integral of p(x) come out to be 1, we need the constant to be 1/(b� a). It is
easy to calculate that if a < r < s < b, then

p([r, s]) =
s� r

b� a

The Normal Distribution (or Gaussian distribution)

This is the most important probability distribution, because the distribution
of the average of the results of repeated experiments always approaches a
normal distribution (this is the “central limit theorem”). The sample space
for the normal distribution is always the entire real line. But to begin, we
need to calculate an integral:

I =

Z 1

�1
e�x

2
dx

We will use a trick that goes back (at least) to Liouville: Now note that
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I2 =

✓Z 1

�1
e�x

2
dx

◆
·
✓Z 1

�1
e�x

2
dx

◆
(1.0.2)

=

✓Z 1

�1
e�x

2
dx

◆
·
✓Z 1

�1
e�y

2
dy

◆
(1.0.3)

=

Z 1

�1

Z 1

�1
e�x

2�y

2
dxdy (1.0.4)

because we can certainly change the name of the variable in the second in-
tegral, and then we can convert the product of single integrals into a double
integral. Now (the critical step), we’ll evaluate the integral in polar coordi-
nates (!!) – note that over the whole plane, r goes from 0 to infinity as ✓
goes from 0 to 2⇡, and dxdy becomes rdrd✓:

I2 =

Z
2⇡

0

Z 1

0

e�r

2
rdrd✓ =

Z
2⇡

0

1

2
e�r

2|1
0

d✓ =

Z
2⇡

0

1

2
d✓ = ⇡

Therefore, I =
p
⇡. We need to arrange things so that the integral is 1, and

for reasons that will become apparent later, we arrange this as follows: define

N(x) =
1p
2⇡

e�x

2
/2

Then N(x) defines a probability distribution, called the standard normal dis-
tribution. More generally, we define the normal distribution with parameters
µ and � to be

p(x) =
1

�
N(

x� µ

�
) =

1p
2⇡�

e
�(x�µ)2

2�

2

Exponential distribution (with parameter ↵)

This arises when measuring waiting times until an event, or time-to-failure
in reliability studies. For this distribution, the sample space is the positive
part of the real line [0,1) (or we can just let p(x) = 0 for x < 0). The
probability density function is given by p(x) = ↵e�↵x. It is easy to check
that the integral of p(x) from 0 to infinity is equal to 1, so p(x) defines a
bona fide probability density function.
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1.1 Expectation of a Random Variable

The expectation of a random variable is essentially the average value it is
expected to take on. Therefore, it is calculated as the weighted average of
the possible outcomes of the random variable, where the weights are just the
probabilities of the outcomes. As a trivial example, consider the (discrete)
random variable X whose sample space is the set {1, 2, 3} with probability
function given by p(1) = 0.3, p(2) = 0.1 and p(3) = 0.6. If we repeated this
experiment 100 times, we would expect to get about 30 occurrences of X = 1,
10 of X = 2 and 60 of X = 3. The average X would then be ((30)(1) +
(10)(2) + (60)(3))/100 = 2.3. In other words, (1)(0.3) + (2)(0.1) + (3)(0.6).
This reasoning leads to the defining formula:

E(X) =
X

x2S

xp(x)

for any discrete random variable. The notation E(X) for the expectation of
X is standard, also in use is the notation hXi.

For continuous random variables, the situation is similar, except the sum
is replaced by an integral (think of summing up the average values of x by
dividing the sample space into small intervals [x, x + dx] and calculating the
probability p(x)dx that X fall s into the interval. By reasoning similar to
the previous paragraph, the expectation should be

E(X) = lim
dx!0

X

x2S

xp(x)dx =

Z

S

xp(x)dx.

This is the formula for the expectation of a continuous random variable.

Example 1.1.1. :

1. Uniform discrete: We’ll need to use the formula for
P

k that you
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learned in freshman calculus when you evaluated Riemann sums:

E(X) =
bX

k=a

k · 1

b� a + 1
(1.1.1)

=
1

b� a + 1

 
bX

k=0

k �
a�1X

k=0

k

!
(1.1.2)

=
1

b� a + 1

✓
b(b + 1)

2
� (a� 1)a

2

◆
(1.1.3)

=
1

2

1

b� a + 1
(b2 + b� a2 + a) (1.1.4)

=
1

2

1

b� a + 1
(b� a + 1)(b + a) (1.1.5)

=
b + a

2
(1.1.6)

which is what we should have expected from the uniform distribution.

2. Uniform continuous: (We expect to get (b + a)/2 again, right?). This
is easier:

E(X) =

Z
b

a

x
1

b� a
dx (1.1.7)

=
1

b� a

b2 � a2

2
=

b + a

2
(1.1.8)

3. Poisson distribution with parameter ↵: Before we do this, recall the
Taylor series formula for the exponential function:

ex =
1X

k=0

xk

k!

Note that we can take the derivative of both sides to get the formula:

ex =
1X

k=0

kxk�1

k!

If we multiply both sides of this formula by x we get

xex =
1X

k=0

kxk

k!
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We will use this formula with x replaced by ↵.

If X is a discrete random variable with a Poisson distribution, then its
expectation is:

E(X) =
1X

k=0

k
e�↵↵k

k!
= e�↵

 1X

k=0

k↵k

k!

!
= e�↵ (↵e↵) = ↵.

4. Exponential distribution with parameter ↵. This is a little like the
Poisson calculation (with improper integrals instead of series), and we
will have to integrate by parts (we’ll use u = x so du = dx, and
dv = e�↵xdx so that v will be � 1

↵

e�↵x ):

E(X) =

Z 1

0

x↵e�↵xdx = ↵

✓
� 1

↵
xe�↵x � 1

↵2

e�↵x

◆
|1
0

=
1

↵
.

Note the di↵erence between the expectations of the Poisson and expo-
nential distributions!!

5. By the symmetry of the respective distributions around their “centers”,
it is pretty easy to conclude that the expectation of the binomial dis-
tribution (with parameter n) is n/2, and the expectation of the normal
distribution (with parameters µ and �) is µ.

6. Geometric random variable (with parameter r): It is defined on the
sample space {0, 1, 2, 3, ...} of non-negative integers and, given a fixed
value of r between 0 and 1, has probability function given by

p(k) = (1� r)rk

The geometric series formula:

1X

k=0

ark =
a

1� r

shows that p(k) is a probability function. We can compute the expec-
tation of a random variable X having a geometric distribution with
parameter r as follows (the trick is reminiscent of what we used on the
Poisson distribution):

E(X) =
1X

k=0

k(1� r)rk = (1� r)r
1X

k=0

krk�1
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= (1� r)r
d

dr

1X

k=0

rk = (1� r)r
d

dr

1

1� r
=

r

1� r

7. Another distribution defined on the positive integers {1, 2, 3, ...} by
the function p(k) = 6

⇡

2
k

2 . This is a probability function based on the
famous formula due to Euler :

1X

k=1

1

k2

=
⇡2

6

But an interesting thing about this distribution concerns its expecta-
tion: Because the harmonic series diverges to infinity, we have that

E(X) =
6

⇡2

1X

k=1

k

k2

=
6

⇡2

1X

k=1

1

k
= 1

So the expectation of this random variable is infinite (Can you interpret
this in terms of an experiment whose outcome is a random variable with
this distribution?)

If X is a random variable (discrete or continuous), it is possible to define
related random variables by taking various functions of X, say X2 or sin(X)
or whatever.

If Y = f(X) for some function f , then the probability of Y being in some
set A is defined to be the probability of X being in the set f�1(A).

As an example, consider an exponentially distributed random variable
X with parameter ↵=1. Let Y = X2. Since X can only be positive, the
probability that Y is in the interval [a, b] is the same as the probability that
X is in the interval [

p
a,
p

b].
We can calculate the probability density function p(y) of Y by recalling

that the probability that Y is in the interval [0, y] (actually (�1, y]) is the
integral of p(y) from 0 to y. In other words, p(y) is the integral of the function
h(y), where h(y) = the probability that Y is in the interval [0, y]. But h(y)
is the same as the probability that X is in the interval [0,

p
y]. We calculate:

p(y) =
d

dy

Z p
y

0

e�xdx =
d

dy

⇣
�e�x|

p
y

0

⌘
=

d

dy
(1� e�

p
y) =

1

2
p

y
e�
p

y

There are two ways to calculate the expectation of Y . The first is obvious:
we can integrate yp(y). The other is to make the change of variables y = x2 in
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this integral, which will yield (Check this!) that the expectation of Y = X2

is

E(Y ) = E(X2) =

Z 1

0

x2e�xdx

Theorem 1.1.2. (Law of the unconscious statistician) If f(x) is any function,
then the expectation of the function f(X) of the random variable X is

E(f(X)) =

Z
f(x)p(x)dx or

X

x

f(x)p(x)

where p(x) is the probability density function of X if X is continuous, or the
probability density function of X if X is discrete.

1.2 Variance and higher moments

We are now lead more or less naturally to a discussion of the “moments” of
a random variable.

The rth moment of X is defined to be the expected value of Xr. In
particular the first moment of X is its expectation. If s > r, then having
a finite sth moment is a more restrictive condition than having and rth one
(this is a convergence issue as x approaches infinity, since xr > xs for large
values of x.

A more useful set of moments is called the set of central moments. These
are defined to be the rth moments of the variable X � E(X). In particular,
the second moment of X � E(X) is called the variance of X and is denoted
�2(X). (Its square root is the standard deviation.) It is a crude measure of
the extent to which the distribution of X is spread out from its expectation
value. It is a useful exercise to work out that

�2(X) = E((X � E(X))2) = E(X2)� (E(X))2.

As an example, we compute the variance of the uniform and exponential
distributions:

1. Uniform discrete: If X has a discrete uniform distribution on the in-
terval [a, b], then recall that E(X) = (b + a)/2. We calculate Var(X)
as follows:

Var(X) = E(X2)�
✓

b + a

2

◆
2

=
bX

k=a

k2

b� a + 1
�
✓

b + a

2

◆
2

=
1

12
(b�a+2)(b�a).
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2. Uniform continuous: If X has a continuous uniform distribution on the
interval [a, b], then its variance is calculated as follows:

�2(X) =

Z
b

a

x2

b� a
dx�

✓
b + a

2

◆
2

=
1

12
(b� a)2.

3. Exponential with parameter ↵: If X is exponentially distributed with
parameter ↵, recall that E(X) = 1/↵. Thus:

Var(x) =

Z 1

0

x2↵e�↵xdx� 1

↵2

=
1

↵2

The variance decreases as ↵ increases; this agrees with intuition gained
from the graphs of exponential distributions shown last time.

1.3 Bivariate distributions

It is often the case that a random experiment yields several measurements (we
can think of the collection of measurements as a random vector) – one simple
example would be the numbers on the top of two thrown dice. When there are
several numbers like this, it is common to consider each as a random variable
in its own right, and to form the joint probability density (or joint probability)
function p(x, y, z, ...). For example, in the case of two dice, X and Y are
discrete random variables each with sample space S = {1, 2, 3, 4, 5, 6}, and
p(x, y) = 1/36 for each (x, y) in the cartesian product S⇥S. More generally,
we can consider discrete probability functions p(x, y) on sets of the form
S⇥ T , where X ranges over S and Y over T . Any function p(x, y) such that
p(x, y) is between 0 and 1 for all (x, y) and such that

X

x2S

X

y2T

p(x, y) = 1

defines a (joint) probability function on S ⇥ T .
For continuous functions, the idea is the same. p(x, y) is the joint pdf of

X and Y if p(x, y) is non-negative and satisfies

Z 1

�1

Z 1

�1
p(x, y)dxdy = 1
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We will use the following example of a joint pdf throughout the rest of this
section:

X and Y will be random variables that can take on values (x, y) in the
triangle with vertices (0, 0), (2, 0) and (2, 2). The joint pdf of X and Y will
be given by p(x, y) = 1/(2x) if (x, y) is in the triangle and 0 otherwise. To
see that this is a probability density function, we need to integrate p(x, y)
over the triangle and get 1:

Z
2

0

Z
x

0

1

2x
dydx =

Z
2

0

⇣ y

2x

⌘
|x
0

dx =

Z
2

0

1

2
dx = 1.

For discrete variables, we let p(i, j) be the probability that X = i and
Y = j, P (X = i \ Y = j). This give a function p, the joint probability
function, of X and Y that is defined on (some subset of) the set of pairs of
integers and such that 0  p(i, j)  1 for all i and j and

1X

i=�1

1X

j=�1

p(i, j) = 1

When we find it convenient to do so, we will set p(i, j) = 0 for all i and j
outside the domain we are considering.

For continuous variables, we define the joint probability density function
p(x, y) on (some subset of) the plane of pairs of real numbers. We interpret
the function as follows: p(x, y)dxdy is (approximately) the probability that
X is between x and x + dx and Y is between y and y + dy (with error that
goes to zero faster than dx and dy as they both go to zero). Thus, p(x, y)
must be a non-negative valued function with the property that

Z 1

�1

Z 1

�1
p(x, y) dxdy = 1

As with discrete variables, if our random variables always lie in some subset
of the plane, we will define p(x, y) to be 0 for all (x, y) outside that subset.

We take one simple example of each kind of random variable. For the
discrete random variable, we consider the roll of a pair of dice. We assume
that we can tell the dice apart, so there are thirty-six possible outcomes and
each is equally likely. Thus our joint probability function will be

p(i, j) = 1/36 if 1  i  6, 1  j  6
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and p(i, j) = 0 otherwise.
For our continuous example, we take the example mentioned at the end

of the last lecture:

p(x, y) =
1

2x

for (x, y) in the triangle with vertices (0, 0), (2, 0) and (2, 2), and p(x, y) = 0
otherwise. We checked last time that this is a probability density function
(its integral is 1).

1.4 Marginal distributions

Often when confronted with the joint probability of two random variables,
we wish to restrict our attention to the value of just one or the other. We
can calculate the probability distribution of each variable separately in a
straightforward way, if we simply remember how to interpret probability
functions. These separated probability distributions are called the marginal
distributions of the respective individual random variables.

Given the joint probability function p(i, j) of the discrete variables X and
Y , we will show how to calculate the marginal distributions p

X

(i) of X and
p

Y

(j) of Y . To calculate p
X

(i), we recall that p
X

(i) is the probability that
X = i. It is certainly equal to the probability that X = i and Y = 0, or
X = i and Y = 1, or . . . . In other words the event X = i is the union of the
events X = i and Y = j as j runs over all possible values. Since these events
are disjoint, the probability of their union is the sum of the probabilities of
the events (namely, the sum of p(i, j)). Thus:

p
X

(i) =
1X

j=�1

p(i, j)

. Likewise,

p
Y

(j) =
1X

i=�1

p(i, j)

Make sure you understand the reasoning behind these two formulas!
An example of the use of this formula is provided by the roll of two

dice discussed above. Each of the 36 possible rolls has probability 1/36 of
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occurring, so we have probability function p(i, j) as indicated in the following
table:

i\j 1 2 3 4 5 6 p
X

(i)

1 1/36 1/36 1/36 1/36 1/36 1/36 1/6
2 1/36 1/36 1/36 1/36 1/36 1/36 1/6
3 1/36 1/36 1/36 1/36 1/36 1/36 1/6
4 1/36 1/36 1/36 1/36 1/36 1/36 1/6
5 1/36 1/36 1/36 1/36 1/36 1/36 1/6
6 1/36 1/36 1/36 1/36 1/36 1/36 1/6

p
Y

(j) 1/6 1/6 1/6 1/6 1/6 1/6

The marginal probability distributions are given in the last column and last
row of the table. They are the probabilities for the outcomes of the first (resp
second) of the dice, and are obtained either by common sense or by adding
across the rows (resp down the columns).

For continuous random variables, the situation is similar. Given the joint
probability density function p(x, y) of a bivariate distribution of the two
random variables X and Y (where p(x, y) is positive on the actual sample
space subset of the plane, and zero outside it), we wish to calculate the
marginal probability density functions of X and Y . To do this, recall that
p

X

(x)dx is (approximately) the probability that X is between x and x + dx.
So to calculate this probability, we should sum all the probabilities that both
X is in [x, x + dx] and Y is in [y, y + dy] over all possible values of Y . In the
limit as dy approaches zero,this becomes an integral:

p
X

(x)dx =

✓Z 1

�1
p(x, y) dy

◆
dx

In other words,

p
X

(x) =

Z 1

�1
p(x, y) dy

Similarly,

p
Y

(y) =

Z 1

�1
p(x, y) dx

Again, you should make sure you understand the intuition and the reasoning
behind these important formulas.

We return to our example:

p(x, y) =
1

2x
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for (x, y) in the triangle with vertices (0, 0), (2, 0) and (2, 2), and p(x, y) = 0
otherwise, and compute its marginal density functions. The easy one is p

X

(x)
so we do that one first. Note that for a given value of x between 0 and 2, y
ranges from 0 to x inside the triangle:

p
X

(x) =

Z 1

�1
p(x, y) dy =

Z
x

0

1

2x
dy

=
⇣ y

2x

⌘���
y=x

y=0

=
1

2

if 0  x  2, and p
X

(x) = 0 otherwise. This indicates that the values of X
are uniformly distributed over the interval from 0 to 2 (this agrees with the
intuition that the random points occur with greater density toward the left
side of the triangle but there is more area on the right side to balance this
out).

To calculate p
Y

(y), we begin with the observation that for each value of
y between 0 and 2, x ranges from y to 2 inside the triangle:

p
Y

(y) =

Z 1

�1
p(x, y) dx =

Z
2

x

1

2x
dx

=

✓
1

2
ln(x)

◆����
x=2

x=y

=
1

2
(ln(2)� ln(y))

if 0  y  2 and p
Y

(y) = 0 otherwise. Note that p
Y

(y) approaches infinity as
y approaches 0 from above, and p

Y

(y) approaches 0 as y approaches 2. You
should check that this function is actually a probability density function on
the interval [0, 2], i.e., that its integral is 1.

1.5 Functions of two random variables

Frequently, it is necessary to calculate the probability (density) function of
a function of two random variables, given the joint probability (density)
function. By far, the most common such function is the sum of two random
variables, but the idea of the calculation applies in principle to any function
of two (or more!) random variables.

The principle we will follow for discrete random variables is as follows:
to calculate the probability function for F (X, Y ), we consider the events
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{F (X, Y ) = f} for each value of f that can result from evaluating F at
points of the sample space of (X, Y ). Since there are only countably many
points in the sample space, the random variable F that results is discrete.
Then the probability function p

F

(f) is

p
F

(f) =
X

{(x,y)2S|F (x,y)=f}

p(x, y)

This seems like a pretty weak principle, but it is surprisingly useful when
combined with a little insight (and cleverness).

As an example, we calculate the distribution of the sum of the two dice.
Since the outcome of each of the dice is a number between 1 and 6, the
outcome of the sum must be a number between 2 and 12. So for each f
between 2 and 12:

p
F

(f) =
1X

x=�1
p(x, f � x) =

min(6,f�1)X

max(1,f�6)

1

36
=

1

36
(6� |f � 7|)

A table of the probabilities of various sums is as follows:

f 2 3 4 5 6 7 8 9 10 11 12
p

F

(f) 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36

The ”tent-shaped” distribution that results is typical of the sum of (inde-
pendent) uniformly distributed random variables.

For continuous distributions, our principle will be a little more compli-
cated, but more powerful as well. To enunciate it, we recall that to calculate
the probability of the event F < f , we integrate the pdf of F from �1 to f :

P (F < f) =

Z
f

�1
p

F

(g) dg

Conversely, to recover the pdf of F , we can di↵erentiate the resulting func-
tion:

p
F

(f) =
d

df

Z
f

�1
p

F

(g) dg

(this is simply the first fundamental theorem of calculus). Our principle for
calculating the pdf of a function of two random variables F (X, Y ) will be to
calculate the probabilities of the events {F (X, Y ) < f} (by integrating the
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joint pdf over the region of the plane defined by this inequality), and then
to di↵erentiate with respect to f to get the pdf.

We apply this principle to calculate the pdf of the sum of the random
variables X and Y in our example:

p(x, y) =
1

2x

for (x, y) in the triangle T with vertices (0, 0), (2, 0) and (2, 2), and p(x, y) = 0
otherwise. Let Z = X + Y . To calculate the pdf p

Z

(z), we first note that
for any fixed number z, the region of the plane where Z < z is the half
plane below and to the left of the line y = z�x. To calculate the probability
P (Z < z), we must integrate the joint pdf p(x, y) over this region. Of course,
for z  0, we get zero since the half plane z < 0 has no points in common
with the triangle where the pdf is supported. Likewise, since both X and
Y are always between 0 and 2 the biggest the sum can be is 4. Therefore
P (Z < z) = 1 for all z � 4.

For z between 0 and 4, we need to integrate 1/2x over the intersection of
the half-plane x + y < z and the triangle T. The shape of this intersection is
di↵erent, depending upon whether z is greater than or less than 2: If 0  z 
2, the intersection is a triangle with vertices at the points (0, 0), (z/2, z/2)
and (z, 0). In this case, it is easier to integrate first with respect to x and
then with respect to y, and we can calculate:

P (Z < z) =

Z
z/2

0

Z
z�y

y

1

2x
dxdy =

1

2

Z
z/2

0

�
ln(x)|x=z�y

x=y

�
dy

=
1

2

Z
z/2

0

(ln(z � y)� ln(y)) dy =
1

2
(z� (z� y) ln(z� y)� y ln(y))|y=z/2

y=0

=
1

2
z ln(2)

And since the (cumulative) probability that Z < z is 1

2

z ln(2) for 0 < z < 2,

the pdf over this range is p
Z

(z) = ln(2)

2

.
The calculation of the pdf for 2  z  4 is somewhat trickier because

the intersection of the half-plane x + y < z and the triangle T is more
complicated. The intersection in this case is a quadrilateral with vertices
at the points (0, 0), (z/2, z/2), (2, z � 2) and (2, 0). We could calculate
P (Z < z) by integrating p(x,y) over this quadrilateral. But we will be a
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little more clever: Note that the quadrilateral is the ”di↵erence” of two sets.
It consists of points inside the triangle with vertices (0, 0), (z/2, z/2), (z, 0)
that are to the left of the line x = 2. In other words it is points inside this
large triangle (and note that we already have computed the integral of 1/2x
over this large triangle to be 1

2

z ln(2)) that are NOT inside the triangle with
vertices (2, 0), (2, z � 2) and (z, 0). Thus, for 2  z  4, we can calculate
P (Z < z) as

P (Z < z) =
1

2
z ln(2)�

Z
z

2

Z
z�x

0

1

2x
dydx

=
1

2
z ln(2)�

Z
z

2

⇣ y

2x
|y=z�x

y=0

⌘
dx

=
1

2
z ln(2)�

Z
z

2

z � x

2x
dx =

1

2
ln(2) +

1

2
(z ln(x)� x)|x=z

x=2

=
1

2
z ln(2)� 1

2
(z ln(z)� z � z ln(2) + 2)

= z ln(2)� 1

2
z ln(z) +

1

2
z � 1

To get the pdf for 2 < z < 4, we need only di↵erentiate this quantity, to get

p
Z

(z) =
d

dz
(z ln(2)� 1

2
z ln(z) +

1

2
z � 1) = ln(2)� 1

2
ln(z)

Now we have the pdf of Z = X + Y for all values of z. It is p
Z

(z) = ln(2)/2
for 0 < z < 2, it is p

Z

(z) = ln(2)� 1

2

ln(z) for 2 < z < 4 and it is 0 otherwise.
It would be good practice to check that the integral of p

Z

(z) is 1.
The following fact is extremely useful.

Proposition 1.5.1. If X and Y are two random variables, then E(X+Y ) =
E(X) + E(Y ).

1.6 Conditional Probability

In our study of stochastic processes, we will often be presented with situations
where we have some knowledge that will a↵ect the probability of whether
some event will occur. For example, in the roll of two dice, suppose we already
know that the sum will be greater than 7. This changes the probabilities
from those that we computed above. The event F � 8 has probability
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(5 + 4 + 3 + 2 + 1)/36 = 15/36. So we are restricted to less than half of the
original sample space. We might wish to calculate the probability of getting
a 9 under these conditions. The quantity we wish to calculate is denoted
P (F = 9|F � 8), read ”the probability that F=9 given that F � 8”.

In general to calculate P (A|B) for two events A and B (it is not necessary
that A is a subset of B), we need only realize that we need to compute the
fraction of the time that the event B is true, it is also the case the A is true.
In symbols, we have

P (A|B) =
P (A \B)

P (B)

For our dice example (noting that the event F = 9 is a subset of the event
F � 8), we get

P (F = 9|F � 8) =
P (F = 9)

P (F � 8)
=

4/36

15/36
=

4

15
.

As another example (with continuous probability this time), we calculate
for our 1/2x on the triangle example the conditional probabilities: P (X >
1|Y > 1) as well as P (Y > 1|X > 1) (just to show that the probabilities of
A given B and B given A are usually di↵erent).

First P (X > 1|Y > 1). This one is easy! Note that in the triangle with
vertices (0, 0), (2, 0) and (2, 2) it is true that Y > 1 implies that X > 1.
Therefore the events (Y > 1) \ (X > 1) and Y > 1 are the same, so the
fraction we need to compute will have the same numerator and denominator.
Thus P (X > 1|Y > 1) = 1.

For P (Y > 1|X > 1) we actually need to compute something. But note
that Y > 1 is a subset of the event X > 1 in the triangle, so we get:

P (Y > 1|X > 1) =
P (Y > 1)

P (X > 1)
=

Z
2

1

Z
x

1

1

2x
dydx

Z
2

1

Z
x

0

1

2x
dydx

=
1

2

(1� ln(2))
1

2

= 1� ln(2)

Two events A and B are called independent if the probability of A given
B is the same as the probability of A (with no knowledge of B) and vice
versa. The assumption of independence of certain events is essential to many
probabilistic arguments. Independence of two random variables is expressed
by the equations:

P (A|B) = P (A) P (B|A) = P (B)
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and especially
P (A \B) = P (A) · P (B)

Two random variables X and Y are independent if the probability that
a < X < b remains una↵ected by knowledge of the value of Y and vice versa.
This reduces to the fact that the joint probability (or probability density)
function of X and Y ”splits” as a product:

p(x, y) = p
X

(x)p
Y

(y)

of the marginal probabilities (or probability densities). This formula is a
straightforward consequence of the definition of independence and is left as
an exercise.

Proposition 1.6.1. 1. If X is a random variable, then �2(aX) = a2�2(X)
for any real number a.

2. If X and Y are two independent random variables, then �2(X + Y ) =
�2(X) + �2(Y ).

1.7 Law of large numbers

The point of probability theory is to organize the random world. For many
centuries, people have noticed that, though certain measurements or pro-
cesses seem random, one can give a quantitative account of this randomness.
Probability gives a mathematical framework for understanding statements
like the chance of hitting 13 on a roulette wheel is 1/38. This belief about
the way the random world works is embodied in the empirical law of aver-
ages. This law is not a mathematical theorem. It states that if a random
experiment is performed repeatedly under identical and independent condi-
tions, then the proportion of trials that result in a given outcome converges
to a limit as the number of trials goes to infinity. We now state for future
reference the strong law of large numbers. This theorem is the main rigorous
result giving credence to the empirical law of averages.

Theorem 1.7.1. (The strong law of large numbers) Let X
1

, X
2

, . . . be a se-
quence of independent random variables, all with the same distribution,
whose expectation is µ. Then

P ( lim
n!1

P
n

i=1

X
i

n
! µ) = 1
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Exercises

1. Make your own example of a probability space that is finite and discrete.
Calculate the expectation of the underlying random variable X.

2. Make your own example of a probability space that is infinite and
discrete. Calculate the expectation of the underlying random variable
X.

3. Make your own example of a continuous random variable. Calculate
its expectation.

4. Prove that the normal distribution function

�(x; µ,�) =
1

�
p

2⇡
e
�(x�µ)2

2�

2

is really a probability density function on the real line (i.e., that it
is positive and that its integral from �1 to 1 is 1). Calculate the
expectation of this random variable.

5. What is the relationship among the following partial derivatives? @�

@�

,
@

2
�

@x

2 , and @�

@t

, where t = �2 (for the last one, rewrite � as a function of
x, µ and t).

6. Consider the experiment of picking a point at random from a uniform
distribution on the disk of radius R centered at the origin in the plane
(“uniform” here means if two regions of the disk have the same area,
then the random point is equally likely to be in either one). Calculate
the probability density function and the expectation of the random
variable D, defined to be the distance of the random point from the
origin.

7. Prove the principle of inclusion and exclusion, p(A[B) = p(A)+p(B)�
p(A \B) and p(Ac) = 1� p(A).

8. If S is a finite set with n elements, how many elements are in P(S)
the power set of S. (Hint, try it for the first few values of n, and don’t
forget to count the empty set.)
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9. Show that for a function f : S ! R that for A
1

, A
2

, A
3

, . . ., a collection
of subsets of the real numbers, that

f�1([1
j=1

A
j

) = [1
j=1

f�1(A
j

)

Use this to prove that if f is a random variable on a probability space
(S,⌦, P then its distribution P

f

as defined above is also a probability.

10. For each of the examples of random variables you gave in problems 1,
2 and 3 calculate the expectation and the variance, if they exist.

11. Calculate the variance of the binomial, Poisson and normal distribu-
tions. The answer for the normal distribution is �2.

12. Let X be any random variable with finite second moment. Consider
the function f(a) defined as follows: f(a) = E((X � a)2). Show that
the minimum value of f occurs when a = E(X).

13. Fill in the details of the calculation of the variance of the uniform and
exponential distributions. Also, prove that

�2(X) = E((X � E(X))2) = E(X2)� (E(X))2.

14. Let X be a random variable with the standard normal distribution.
find the mean and variance of each of the following:|X|, X2 and etX .

15. Let X be the sine of an angle in radians chosen uniformly from the
interval (�⇡/2, ⇡/2). Find the pdf of X, its mean and its variance.

16. Calculate the variance of the binomial, Poisson and normal distribu-
tions. The answer for the normal distribution is �2.

17. Let p(x, y) be the uniform joint probability density on the unit disk,
i.e.,

p(x, y) =
1

⇡
if x2 + y2 < 1

and p(x, y) = 0 otherwise. Calculate the pdf of X + Y .

18. Suppose X and Y are independent random variables, each distributed
according to the exponential distribution with parameter ↵. Find the
joint pdf of X and Y (easy). Find the pdf of X + Y . Also find the
mean and variance of X + Y .



Chapter 2

Aspects of finance and
derivatives

The point of this book is to develop some mathematical techniques that can
be used in finance to model movements of assets and then to use this to solve
some interesting problems that occur in concrete practice.

Two of the problems that we will encounter is asset allocation and deriva-
tive valuation. The first, asset allocation, asks how do we allocate our re-
sources in various assets to achieve our goals? These goals are usually phrased
in terms of how much risk we are willing to acquire, how much income we
want to derive from the assets and what level of return we are looking for.
The second, derivative valuation, asks to calculate an intrinsic value of a
derivative security (for example, an option on a stock). Though it might
seem more esoteric, the second question is actually more basic than the first
(at least in our approach to the problem). Thus we will attack derivative
valuation first and then apply it to asset allocation.

2.1 What is a derivative security?

What is a derivative security? By this we mean any financial instrument
whose value depends on (i.e. is derived from ) an underlying security. The
underlying in theory could be practically anything: a stock, a stock index,
a bond or much more exotic things. Our most fundamental example is an
option on a stock. An options contract gives the right but not the obligation
to the purchaser of the contract to buy (or sell) a specified (in our case ) stock

31
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at a specific price at a specific future time. For example, I could buy a (call)
option to buy 100 shares of IBM at $90 a share on January 19. Currently,
this contract is selling for $191

2

. The seller of this option earns the $191

2

(the
price (premium) of the options contract) and incurs the obligation to sell me
100 shares of IBM stock on January 31 for $90 if I should so choose. Of
course, when January 19 rolls around, I would exercise my option only if the
price of IBM is more than $90.

Another well known and simpler example is a forward. A forward contract
is an agreement/contract between two parties that gives the right and the
obligation to one of the parties to purchase (or sell) a specified commodity
(or financial instrument) at a specified price at a specific future time. No
money changes hands at the outset of the agreement.
For example, I could buy a June forward contract for 50,000 gallons of frozen
orange juice concentrate for $.25/gallon. This would obligate me to take
delivery of the frozen orange juice concentrate in June at that price. No
money changes hands at the establishment of the contract.

A similar notion is that of a futures contract. The di↵erence between a for-
ward and a future contract is that futures are generally traded on exchanges
and require other technical aspects, such as margin accounts.

2.2 Securities

The two most common types of securities are an ownership stake or a debt
stake in some entity, for example a company or a government. You become
a part owner in a company by buying shares of the company’s stock. A debt
security is usually acquired by buying a company’s or a government’s bonds.
A debt security like a bond is a loan to a company in exchange for interest
income and the promise to repay the loan at a future maturity date.

Securities can either be sold in a market (an exchange) or over the counter.
When sold in an exchange the price of the security is subject to market forces.
When sold over the counter, the price is arrived at through negotiation by
the parties involved.

Securities sold on an exchange are generally handled by market makers
or specialists. These are traders whose job it is to always make sure that
the security can always be bought or sold at some price. Thus they provide
liquidity for the security involved. Market makers must quote bid prices (the
amount they are willing to buy the security for)and ask prices (the amount
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they are willing to sell the security for) of the securities. Of course the bid
price is usually greater than the ask and this is one of the main ways market
makers make their money. The spot price is the amount that the security is
currently selling for. That is, we will usually assume that the bid and ask
prices are the same. This is one of many idealizations that we will make as
we analyze derivatives.

2.3 Types of derivatives

A European call option (on a stock) is a contract that gives the buyer the
right but not the obligation to buy a specified stock for a specified price K,
the strike price, at a specified date, T , the expiration date from the seller of
the option. If the owner of the option can exercise the option any time up
to T , then it is called an American call.

A put is just the opposite. It gives the owner of the contract the right to
sell. It also comes in the European and American varieties.

Some terminology: If one owns an asset, one is said to have a long position
in that asset. Thus is I own a share of IBM, I am long one share in IBM.

The opposite position is called short. Thus if I owe a share of IBM, I am
short one share of IBM. Short selling is a basic financial maneuver. To short
sell, one borrows the stock (from your broker, for example), sells it in the
market. In the future, one must return the stock (together with any dividend
income that the stock earned). Short selling allows negative amounts of a
stock in a portfolio and is essential to our ability to value derivatives.

One can have long or short positions in any asset, in particular in options.
Being long an option means owning it. Be short an option means that you
are the writer of the option.

These basic call and put options are sold on exchanges and their prices
are determined by market forces.

There are also many types of exotic options.
Asian options: these are options allowing one to buy a share of stock for the
average value of the stock over the lifetime of the option. Di↵erent versions
of these are based on calculating the average in di↵erent ways. An interesting
feature of these is that their pay o↵ depends not only on the value of the
stock at expiration, but on the entire history of the stock’s movements. We
call this feature path dependence.
Barrier options: These are options that either go into e↵ect or out of e↵ect if
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the stock value passes some threshold. For example, a down and out option
is an option that expires worthless if the barrier X is reached from above
before expiration. There are also down and in, up and in, up and out, and
you are encouraged to think what these mean. These are path dependent.
Lookback options: Options whose pay-o↵ depends on the the maximum or
minimum value of the stock over the lifetime of the option.

2.4 The basic problem: How much should I
pay for an option? Fair value

A basic notion of modern finance is that of risk. Contrary to common par-
lance, risk is not only a bad thing. Risk is what one gets rewarded for in
financial investments. Quantifying risk and the level of reward that goes
along with a given level of risk is a major activity in both theoretical and
practical circles in finance. It is essential that every individual or corporation
be able to select and manipulate the level of risk for a given transaction. This
redistribution of risk towards those who are willing and able to assume it is
what modern financial markets are about.

Options can be used to reduce or increase risk. Markets for options
and other derivatives are important in the sense that agents who anticipate
future revenues or payments can ensure a profit above a certain level or insure
themselves against a loss above a certain level.

It is pretty clear that a prerequisite for e�cient management of risk is
that these derivative products are correctly valued, and priced. Thus our
basic question: How much should I pay for an option?

We make a formal distinction between value and price. The price is what
is actually charged while the value is what the thing is actually worth.

When a developer wants to figure out how much to charge for a new
house say, he calculates his costs: land, material and labor, insurance, cost
of financing etc.. This is the houses value. The developer, wanting to make
a profit, adds to this a markup. The total we call the price. Our problem is
to determine the value of an option.

In 1997, the Nobel Prize in economics was awarded to Robert Merton
and Myron Scholes, who along with Fischer Black, wrote down a solution
to this problem. Black died in his mid-fifties in 1995 and was therefore
not awarded the Nobel prize. Black and Scholes wrote down there formula,



2.5. EXPECTATION PRICING. EINSTEIN AND BACHELIER, WHAT THEY KNEW ABOUT DERIVATIVE PRICING. AND WHAT THEY DIDN’T KNOW35

the Black-Scholes Formula in 1973. They had a di�cult time getting their
paper published. However, within a year of its publication, Hewlett Packard
had a calculator with this formula hardwired into it. Today this formula is
an indispensable tool for thousands of traders and investors to value stock
options in markets throughout the world.

Their method is quite general and can be used and modified to handle
may kinds of exotic options as well as to value insurance contracts, and even
has applications outside of finance.

2.5 Expectation pricing. Einstein and Bache-
lier, what they knew about derivative pric-
ing. And what they didn’t know

As opposed to the case of pricing a house, an option seems more like pricing
bets in a casino. That is, the amount the casino charges for a given bet
is based on models for the payo↵s of the bets. Such models are of course
statistical/probabilistic.

As an example, suppose we play a (rather silly) game of tossing a die
and the casino pays the face value on the upside of the die in dollars. How
much should the casino charge to play this game. Well, the first thing is
to figure out the fair value. The casino of course is figuring that people
will play this game many many times. Assuming that the die is fair, (i.e.
P (X = i) = 1/6, for i = 1, 2, . . . , 6 and that each roll of the die doesn’t a↵ect
(that is independent of ) any other roll, the law of large numbers says that if
there are n plays of the game, that the average of the face values on the die
will be with probability close to 1

E(X) = 1 · 1/6 + 2 · 1/6 + · · · + 6 · 1/6 = 21/6

Thus after n plays of the game, the casino feels reasonably confident that
they will be paying o↵ something close to $21/6 ·n. So 21/6 is the fair valuer
per game. The casino desiring to make a profit sets the actual cost to play
at 4. Not too much higher than the fair value or no would want to play, they
would lose their money too fast.

This is an example of expectation pricing. That is, the payo↵ of some
experiment is random. One models this payo↵ as a random variable and uses
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the strong law of large numbers to argue that the fair value is the expectation
of the random variable. This works much of the time.

Some times it doesn’t. There are a number of reasons why the actual value
might not be the expectation price. In order for the law of large numbers
to kick in, the experiment has to be performed many times, in independent
trials. If you are o↵ered to play a game once, it might not be a very good
value. What’s the fair value to play Russian Roulette? As we will see below,
there are more subtle and interesting reason why the fair value is not enforced
in the market.

Thinking back to stocks and options, what would be the obvious way to
use expectation pricing to value an option. The first order of business would
be to model the movement of the underlying stock. Unfortunately, the best
we can do here as well is to give a probabilistic model.

The French mathematician Louis Bachelier in his doctoral dissertation
around 1900 was one of the earliest to attempt to model stock movements.
He did so by what we now call a Random Walk (discrete version) or a Wiener
process (continuous version). This actually predated the use of these to model
Brownian motion, (for which Einstein got his Nobel Prize ). Bachelier’s thesis
advisor, Jacques Hadamard did not have such high regard for Bachelier’s
work.

2.5.1 Payo↵s of derivatives

We will have a lot to say in the future about models for stock movements.
But for now, let’s see how might we use this to value an option. Let us
consider a European call option C to buy a share of XYZ stock with strike
price K at time T . Let S

t

denote the value of the stock at time t.The one
time we know the value of the option is at expiration. At expiration there
are two possibilities. If the value of the stock at expiration is less than the
strike price S

T

 K, we don’t exercise our option and expires worthless. If
S

T

> K then it makes sense to exercise the option, paying K for the stock,
and selling it on the market for S

T

, the whole transaction netting $S
T

�K.
Thus, the option is worth max(S

t

� K, 0). This is what we call the payo↵
of the derivative. It is what the derivative pays at expiration, which in this
case only depends on the value of the stock at expiration.

On your own, calculate the payo↵ of all the derivatives defined in section
2.3.
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Assuming a probabilistic model for S
t

we would arrive at a random vari-
able S

T

describing in a probabilistic way the value of XYZ at time T . Thus
the value of the option would be the random variable max(S

T

�K, 0). And ex-
pectation pricing would say that the fair price should be E(max(S

T

�K, 0)).
(I am ignoring the time value of money, that is, I am assuming interest rates
are 0. )

Bachelier attempted to value options along these lines, unfortunately, it
turns out that expectation pricing (naively understood at least) does not
work. There is another wrinkle to option pricing. It’s called arbitrage.

2.6 The simple case of forwards. Arbitrage
arguments

I will illustrate the failure of expectation pricing with the example of a for-
ward contract. This time I will also keep track of the time value of money.
The time value of money is expressed by interest rates. If one has $B at
time t , then at time T > t it will be worth $ exp(r(T � t))B. Bonds are the
market instruments that express the time value of money. A zero-coupon
bond is a promise of a specific amount of money (the face or par value) at
some specified time in the future, the expiration date. So if a bond promises
to pay $B

T

at time T , then its current value B
t

can be expressed as B
T

discounted by some interest rate r, that is B
t

= exp(�r(T � t))B
T

. For the
meanwhile, we will assume that the interest rate r is constant. This makes
some sense. Most options are rather short lived, 3 months to a year or so.
Over this period, the interest rates do no vary so much.

Now suppose that we enter into a forward contract with another person to
buy one share of XYZ stock at time T. We want to calculate what the forward
price $F is. Thus at time T , I must buy a share of XYZ for $F from him and
he must sell it to me for $F . So at time T , the contract is worth $S

T

� F .
According to expectation pricing, and adjusting for the time value of money,
this contract should at time t be worth $ exp(r(T � t))E(S

T

�F ). Since the
contract costs nothing to set up, if this is not zero, it would lead to profits or
losses over the long run, by the law of large numbers. So expectation pricing
says F = E(S

T

).
On the other hand, consider the following strategy for the party who

must deliver the stock at time T . If the stock is now, at time t worth $S
t

,
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he borrows the money at the risk free interest rate r, buys the stock now,
and holds the stock until time T . At time T he can just hand over the stock,
collect $F and repay the loan exp(r(T � t))S

t

. After the transaction is over
he has $(F � exp(r(T � t))S

t

. At the beginning of the contract, it is worth
nothing; no money changes hands. So he starts with a contract costing no
money to set up, and in the end has $(F �exp(r(T � t))S

t

. If this is positive,
then we have an arbitrage opportunity. That is a risk free profit. No matter
how small the profit is on any single transaction, one can parley this into
unlimited profits by performing the transaction in large multiples. On the
other hand, what will happen in practice if this is positive. Someone else will
come along and o↵er the same contract but with a slightly smaller F still
making a positive (and thus a potentially unlimited) positive. Therefore, as
long as $(F � exp(r(T � t))S

t

> 0 someone can come along and undercut
him and still make unlimited money. So $(F � exp(r(T � t))S

t

 0
If $(F � exp(r(T � t))S

t

< 0 you can work it from the other side. That
is, the party to the contract who must buy the stock for F at time T , can
at time t short the stock (i.e. borrow it) and sell it in the market for $S

t

.
Put the money in the risk free instrument. At time T , buy the stock for $F ,
return the stock, and now has exp(r(T � t))S

t

in the risk free instrument. So
again, at time t the contract costs nothing to set up, and at time T she has
$(exp(r(T � t))S

t

�F ) which is positive. Again, an arbitrage opportunity. A
similar argument as in the paragraph above shows that $(exp(r(T � t))S

t

�
F )  0. So we arrive at F = exp(r(T � t))S

t

. So we see something very
interesting. The forward price has nothing to do with the expected value
of the stock at time S

T

. It only has to do with the value of the stock at
the time of the beginning of the contract. This is an example of the basic
arbitrage argument. In practice, the price arrived at by expectation pricing
F = E(S

T

) would be much higher than the price arrived at by the arbitrage
argument.

Let’s give another example of an arbitrage argument. This is also a basic
result expressing the relationship between the value of a call and of a put.

Proposition 2.6.1. (Put-Call parity) If S
t

denotes the value of a stock XYZ
at time t, and C and P denote the value of a call and put on XYZ with
the same strike price K and expiration T , then at time t, P + S

t

= C +
K exp(�r(T � t)).

Proof: By now, you should have calculated that the payo↵ on a put is
max(K �S

T

, 0). Now form the portfolio P + S�C. That is, long a share of
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stock, and a put, and short a call. Then at time T we calculate.

Case 1: S
T

 K. Then P +S�C = max(K�S
T

, 0)+S
T

�max(S
T

�K, 0) =
K � S

T

+ S
T

� 0 = K

Case 2: S
T

> K. Then P +S�C = max(K�S
T

, 0)+S
T

�max(S
T

�K, 0) =
0 + S

T

� (S
T

�K) = K
So the payo↵ at time T from this portfolio is K no matter what. That is it’s
risk free. Regardless of what S

T

is, the portfolio is worth K at time T . What
other financial entity has this property? A zero-coupon bond with par value
K. Hence the value of this portfolio at time t is K exp(�r(T � t)). Giving
the theorem.
Q.E.D.

2.7 Arbitrage and no-arbitrage

Already we have made arguments based on the fact that it is natural for
competing players to undercut prices as long as they are guaranteed a pos-
itive risk free profit, and thus able to generate large profits by carrying out
multiple transactions. This is formalized by the no arbitrage hypothesis. (We
formalize this even more in the next section.) An arbitrage is a portfolio that
guarantees an (instantaneous) risk free profit. It is important to realize that
a zero-coupon bond is not an arbitrage. It is risk free to be sure, but the
growth of the risk free bond is just an expression of the time value of money.
Thus the word instantaneous in the definition is equivalent to saying that
the portfolio is risk free and grows faster than the risk-free interest rate.

Definition 2.7.1. The no-arbitrage hypothesis is the assumption that arbi-
trage opportunities do not exist.

What is the sense of this? Of course arbitrage opportunities exist. There
exist people called arbitrageurs whose job it is to find these opportunities.
(And some of them make a lot of money doing it.)

Actually, a good discussion of this is in Malkiel’s book, along with the
e�cient market hypothesis. But Malkiel and others would insist that in
actual fact, arbitrage opportunities don’t really exist. But even if you don’t
buy this, it seems to be a reasonable assumption (especially in view of the
reasonable arguments we made above.) as a starting point.
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In fact, the existence of arbitrageurs makes the no-arbitrage argument
more reasonable. The existence of many people seeking arbitrage opportu-
nities out means that when such an opportunity arises, it closes all the more
quickly. On publicly traded stocks the existence of arbitrage is increasingly
rare. So as a basic principle in valuing derivatives it is a good starting point.
Also, if one sees derivatives mispriced, it might mean the existence of arbi-
trage opportunities. So you have a dichotomy; you can be right (about the
no-arbitrage hypothesis), in which case your evaluation of derivative prices
is better founded, or you can make money (having found an arbitrage oppor-
tunity).

2.8 The arbitrage theorem

In this section we establish the basic connection between finance and mathe-
matics. Our first goal is to figure out what arbitrage means mathematically
and for this we model financial markets in the following way. We consider
the following situation. Consider N possible securities, labeled {1, . . . , N}.
These may be stocks, bonds, commodities, options, etc. Suppose that now, at
time 0, these securities are selling at S

1

, S
2

, S
3

, . . . , S
N

units of account (say
dollars if you need closure). Note that this notation is di↵erent than notation
in the rest of the notes in that subscript does not denote time but indexes the
di↵erent securities. Consider the column vector S whose components are the
S

j

’s. At time 1, the random nature of financial markets are represented by
the possible states of the world, which are labeled 1, 2, 3, 4, . . . ,M . That is,
from time 0 to time 1 the world has changed from its current state (reflected
in the securities prices S), to one of M possible states. Each security, say i
has a payo↵ d

ij

in state j. This payo↵ reflects any change in the security’s
price, any dividends that are paid or any possible change to the over all worth
of the security. We can organize these payo↵s into an N ⇥M matrix,

D =

0

BB@

d
1,1

d
1,2

. . . d
1,M

d
2,1

d
2,2

. . . d
2,M

. . . . . . . . . . . .
d

N,1

d
N,2

. . . d
N,M

1

CCA (2.8.1)
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Our portfolio is represented by a N ⇥ 1 column matrix

✓ =

0

BB@

✓
1

✓
2

. . .
✓

N

1

CCA (2.8.2)

where ✓
i

represents the number of copies of security i in the portfolio. This
can be a negative number, indicating short selling.

Now, the market value of the portfolio is ✓ · S = ✓T S. The pay-o↵ of the
portfolio can be represented by the M ⇥ 1 matrix DT ✓

=

0

BBB@

P
N

j=1

d
j,1

✓
jP

N

j=1

d
j,2

✓
j

. . .P
N

j=1

d
j,M

✓
j

1

CCCA
(2.8.3)

where the ith row of the matrix, which we write as (DT ✓)
i

represents the
payo↵ of the portfolio in state i. The portfolio is riskless if the payo↵ of the
portfolio is independent of the state of the world, i.e. (DT ✓)

i

= (DT ✓)
j

for
any states of the world i and j.

Let
Rn

+

= {(x
1

, . . . , x
n

)|x
i

� 0 for all i}
and

Rn

++

= {(x
1

, . . . , x
n

)|x
i

> 0 for all i}
. We write v � 0 if v 2 Rn

+

and v > 0 if v 2 Rn

++

.

Definition 2.8.1. An arbitrage is a portfolio ✓ such that either

1. ✓ · S  0 and DT ✓ > 0 or

2. ✓ · S < 0 and DT ✓ � 0

These conditions express that the portfolio goes from being worthless
(respectively, less that worthless) to being worth something (resp. at least
worth nothing), regardless of the state at time 1. In common parlance, an
arbitrage is an (instantaneous) risk free profit, in other words, a free-lunch.

Definition 2.8.2. A state price vector is a M ⇥1 column vector  such that
 > 0 and S = D .
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Theorem 2.8.1. (Arbitrage theorem) There are no arbitrage portfolios if and
only if there is a state price vector.

Before we prove this theorem, we need an abstract theorem from linear
algebra. Let’s recall that a subset C ⇢ Rn is called convex if the line between
any two points of C is completely contained in C. That is, for any two points
x, y 2 C and any t 2 [0, 1] one has

x + t(y � x) 2 C

Theorem 2.8.2. (The separating hyperplane theorem) Let C be a compact
convex subset of Rn and V ⇢ RN a vector subspace such that V \ C = ;.
Then there exists a point ⇠

0

2 Rn such that ⇠
0

· c > 0 for all c 2 C and
⇠
0

· v = 0 for all v 2 V .

First we need a lemma.

Lemma 2.8.3. Let C be a closed and convex subset of Rn not containing 0.
Then there exists ⇠

0

2 C such that ⇠
0

· c � ||⇠
0

||2 for all c 2 C.

Proof: Let r > 0 be such that B
r

(0) \ C 6= ;. Here B
r

(x) denotes all those
points a distance r or less from x. Let ⇠

0

2 C \ B
r

(0) be an element which
minimizes the distance from the origin for elements in C \B

r

(0). That is,

||⇠
0

||  ||c|| (2.8.4)

for all c 2 B
r

(0) \ C. Such a ⇠
0

exists by the compactness of C \ B
r

(0).
Then it follows that (2.8.4) holds for all c 2 C since if c 2 C \ B

r

(0) then
||⇠

0

||  r  ||c||.
Now since C is convex, it follows that for any c 2 C, we have ⇠

0

+t(c�⇠
0

) 2
C so that

||⇠
0

||2  ||⇠
0

+ t(c� ⇠
0

)||2 = ||⇠
0

||2 + 2t⇠
0

· (c� ⇠
0

) + t2||c� ⇠
0

||2

Hence
2||⇠

0

||2 � t||c� ⇠
0

||  2⇠
0

· c
for all t 2 [0, 1]. So ⇠

0

· c � ||⇠
0

||2
QED.

Proof (of the separating hyperplane theorem) Let C be compact and convex,
V ⇢ Rn as in the statement of the theorem. Then consider

C � V = {c� v | c 2 C, v 2 V }
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This set is closed and convex. (Here is where you need C be compact.) Then
since C \V = ; we have that C �V doesn’t contain 0. Hence by the lemma
there exists ⇠

0

2 C � V such that ⇠
0

· x � ||⇠
0

||2 for all x 2 C � V . But this
implies that for all c 2 C, v 2 V that ⇠

0

· c� ⇠
0

· v � ||⇠
0

||2. Or that

⇠
0

· c > ⇠
0

· v

for all c 2 C and v 2 V . Now note that since V is a linear subspace, that
for any v 2 V , av 2 V for all a 2 R. Hence ⇠

0

· c > ⇠
0

· av = a⇠
0

· v for all a.
But this can’t happen unless ⇠

0

· v = 0. So we have ⇠
0

· v = 0 for all v 2 V
and also that ⇠

0

· c > 0.
QED.
Proof (of the arbitrage theorem): Suppose S = D , with  > 0. Let ✓ be a
portfolio with S · ✓  0. Then

0 � S · ✓ = D · ✓ =  · DT ✓

and since  > 0 this implies DT ✓  0. The same argument works to handle
the case that S · ✓ < 0.

To prove the opposite implication, let

V = {(�S · ✓, DT ✓) | ✓ 2 RN} ⇢ RM+1

Now consider C = R
+

⇥ RM

+

. C is closed and convex. Now by definition,
there exists an arbitrage exactly when there is a non-zero point of intersection
of V and C. Now consider

C
1

= {(x
0

, x
1

, . . . , x
M

) 2 C | x
0

+ · · · + x
M

= 1}

C
1

is compact and convex. Hence there exists according to (2.8.2) x 2 C
1

with

1. x · v = 0 for all v 2 V and

2. x · c > 0 for all c 2 C
1

.

Then writing x = (x
0

, x
1

, . . . , x
M

) we have that x · v = 0 implies that for all
✓ 2 RN , (�S ·✓)x

0

+DT ✓ ·(x
1

, . . . , x
M

)T = 0. So DT ✓ ·(x
1

, . . . , x
M

)T = x
0

S ·✓
or ✓ · D(x

1

, . . . , x
M

)T = x
0

S · ✓. Hence letting

 =
(x

1

, . . . , x
M

)T

x
0
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we have ✓ ·D = S · ✓ for all ✓. Thus D = S and  is a state price vector.
Q.E.D.

Let’s consider the following example. A market consisting of two stocks
1, 2. And two states 1, 2. Suppose that S

1

= 1 and S
2

= 1. And

D =

✓
1 1
1

2

2

◆
(2.8.5)

So security 1 pays o↵ 1 regardless of state and security 2 pays of 1/2 in state
1 and 2 in state 2. Hence if

✓ =

✓
✓
1

✓
2

◆
(2.8.6)

is a portfolio its payo↵ will be DT ✓
✓
✓
1

+ ✓
2

/2
✓
1

+ 2✓
2

◆
(2.8.7)

Is there a  with S = D . One can find this matrix easily by matrix inversion
so that ✓

1
1

◆
=

✓
1 1
1

2

2

◆✓
 

1

 
2

◆
(2.8.8)

So that ✓
 

1

 
2

◆
=

✓
4/3 �2/3

�1/3 2/3

◆✓
1
1

◆
=

✓
2/3
1/3

◆
(2.8.9)

Now we address two natural and important questions.

What is the meaning of the state price vector?

How do we use this to value derivatives?

We formalize the notion of a derivative.

Definition 2.8.3. A derivative (or a contingency claim) is a function on the
set of states.

We can write this function as an M ⇥ 1 vector. So if h is a contingency
claim, then h will payo↵ h

j

if state j is realized. To see how this compares
with what we have been talking about up until now, let us model a call on
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security 2 in the example above. Consider a call with strike price 11

2

on
security 2 with expiration at time 1. Then h

j

= max(d
2,j

� 11

2

, 0). Or

h =

✓
h

1

h
2

◆
=

✓
0
1

2

◆
(2.8.10)

So our derivatives are really nothing new here, except that it allows the
possibility of a payo↵ depending on a combination of securities, which is
certainly a degree of generality that we might want.

To understand what the state price vector means, we introduce some
important special contingency claims. Let ✏j be a contingency claim that
pays 1 if state change occurs, and 0 if any other state occurs. So

✏j =

0

BBBBBB@

0
0
· · ·
1 in the jth row
· · ·
0

1

CCCCCCA
(2.8.11)

These are often called binary options. It is just a bet paying o↵ 1 that state
j occurs. How much is this bet worth? Suppose that we can find a portfolio
✓j such that DT ✓j = ✏j. Let  be a state price vector. Then the market
value of the portfolio ✓j is

S · ✓j = D · ✓j =  · DT ✓j =  · ✏j =  
j

Hence we have shown, that the market value of a portfolio whose payo↵ is ✏j

is  
j

. So the state price vector is the market value of a bet that state j will
be realized. This is the meaning of  .

Now consider

B =
MX

j=1

✏j =

0

BB@

1
1
· · ·
1

1

CCA (2.8.12)

This is a contingency claim that pays 1 regardless of state. That is, B is
a riskless zero-coupon bond with par value 1 and expiration at time 1. Its
market value will then be R =

P
M

j=1

 
j

. So this R is the discount factor for
riskless borrowing. (you might want to think of R as (1+ r)�1 where r is the
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interest rate.) Now we can form a vector Q = 1

R

 . Note that Q 2 R
++

andP
M

j=1

q
j

= 1. So Q can be interpreted as a probability function on the state
space. It is important to remark that these probabilities are not the
real world probabilities that might be estimated for the states j.
They are probabilities that are derived only from the no-arbitrage
condition. They are therefore often called pseudo-probabilities.

Coming back to our problem of valuing derivatives, consider a derivative
h. If ✓ is a portfolio whose payo↵ is h, i.e. DT ✓ = h, we say that ✓ replicates
h. Then the market value of ✓ is

S · ✓ = D · ✓ =  · DT ✓

=  · h = RQ · h = D
MX

j=1

q
j

h
j

= RE
Q

(h)

That is, the market value of ✓ (and therefore the derivative) is the discounted
expectation of h with respect to the pseudo-probability Q. Hence, we have
regained our idea that the value of a contingency claim should be
an expectation, but with respect to probabilities derived from only
from the no-arbitrage hypothesis, not from any actual probabilities
of the states occurring.

Let us go back to the example above. Let’s go ahead and value the option
on security number 2. R = 1 in this example, so the value of h is

RE
Q

(h) = 1 · (02

3
+

1

2

1

3
) = 1/6

Coming back to general issues, there is one further thing we need to dis-
cuss. When is there a portfolio ✓ whose payo↵ DT ✓ is equal to a contingency
claim h. For this we make the following

Definition 2.8.4. A market is complete if for each of the ✏j there is a portfolio
✓j with DT ✓j = ✏j.

Now we see that if a market is complete, then for any contingency claim
h, we have that for ✓ =

P
M

j=1

h
j

✓j that DT ✓ = h. That is, a market is
complete if and only if every claim can be replicated.

We state this and an additional fact as a

Theorem 2.8.4. 1. A market is complete if and only if every contingency
claim can be replicated.
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2. An arbitrage free market is complete if and only if the state price vector
is unique.

Proof: Having proved the first statement above we prove the second. It
is clear from the first statement that if a market is complete then DT :
RN ! RM is onto, that is has rank M . Thus if  1 and  2 are two state
price vectors, then D( 1 �  2) · ✓ = (S � S) · ✓ = 0 for all ✓. But then
0 = D( 1 �  2) · ✓ = ( 1 �  2) · DT ✓. Since DT is onto, this means that
( 1 �  2) · v = 0 for all v 2 RN which means that  1 �  2 = 0.

We prove the other direction by contradiction. So assume that the market
is not complete, and  1 is a state price vector. Then DT is not onto. So we
can find a vector ⌧ orthogonal to the image, i.e. DT ✓ · ⌧ = 0 for all ✓. Then
✓ ·D⌧ = 0 for all ✓ so D⌧ = 0 and  2 =  1 + ⌧ is another state price vector.
QED.
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Exercises

1. Consider a variant of the game described above, tossing a die and the
casino pays the face value on the upside of the die in dollars. Except
this time, if the player doesn’t like her first toss, she is allowed one
additional toss and the casino then pays the face value on the second
toss. What is the fair value of this game?.

2. Suppose a stock is worth $S� just before it pays a dividend, $D. What
is the value of the stock S

+

just after the dividend? Use an arbitrage
argument.

3. Suppose that stock XY Z pays no dividends, and C is an American
call on XY Z with strike price K and expiration T . Show, using an
arbitrage argument, that it is never advantageous to exercise early, that
is, for any intermediate time t < T , C

t

> S
t

�K. (Hint: Calculate the
payo↵ of the option as seen from the same time T in two cases: 1) If
you exercise early at time t < T , 2) If you hold it until expiration. To
finance the first case, you borrow K at time t to buy the stock, buy the
stock, and repay the loan at time T . Calculate this portfolio at time
T . The other case you know the payo↵. Now compare and set up an
arbitrage if S

t

�K � C
t

.)

4. Suppose that C is a call on a non-dividend paying stock S, with strike
price K and expiration T . Show that for any time t < T that C

t

>
S

t

� exp(�r(T � t))K.

5. Suppose that C and D are two calls on the same stock with the same
expiration T , but with strike prices K < L respectively. Show by an
arbitrage argument that C

t

� D
t

for all t < T .

6. Suppose that C and D are two calls on the same stock with the same
strike price K, but with expirations T

1

< T
2

, respectively. Show by an
arbitrage argument that D

t

� C
t

for all t < T
1

.

7. Using the arbitrage theorem, show that there can only be one bond
price. That is, if there are 2 securities paying $1, regardless of state,
then their market value is the same.

8. Consider the example of the market described in section (2.7). Let h
be a put on security 2 with strike price 1

2

. Calculate its market value.
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9. Make up your own market, and show that there is a state price vector.
Consider a specific derivative (of your choice) and calculate its market
value.
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Chapter 3

Discrete time

In this chapter, we proceed from the one period model of the last chapter to
the mutli-period model.

3.1 A first look at martingales

In this section I would like to give a very intuitive sense of what a martingale
is, why they come up in option pricing, and then give an application to
calculating expected stopping times.

The concept of a martingale is one of primary importance in the modern
theory of probability and in theoretical finance. Let me begin by stating the
slogan that a martingale is a mathemical model for a fair game. In fact, the
term martingale derives from the well known betting strategy (in roulette)
of doubling ones bet after losing. First let’s think about what we mean by a
fair game.

Giorolamo Cardano, an Italian, was one of the first mathematicians to
study the theory of gambling. In his treatise, The Book of Games of Chance
he wrote: ”The most fundamental principle of all in gambling is simply equal
conditions, for example, of opponents, of bystanders, of money, of situation,
of the dice box, and of the die itself. To the extent to which you depart from
that equality, if it is in your opponent’s favor, you are a fool, and if in your
own, you are unjust.” (From A. Hald, A History of Probability and Statistics
and their applications before 1750, John Wiley and Sons, New York.)

How do we mathematically model this notion of a fair game, that is, of
equal conditions? Consider a number of gamblers, say N , playing a gambling

51
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game. We will assume that this game is played in discrete steps called hands.
We also assume that the gamblers make equal initial wagers and the winner
wins the whole pot. It is reasonable to model each gambler as the gamblers’
current fortunes. That is, this is the only information that we really need to
talk about. Noting the gamblers’ fortunes at a single time is not so useful,
so we keep track of their fortunes at each moment of time. So let F

n

denote
fortune of one of the gamblers after the nth hand. Because of the random
nature of gambling we let F

n

be a random variable for each n. A sequence
of random variables, F

n

is what is called a stochastic process.
Now for the equal conditions. A reasonable way to insist on the equal

conditions of the gamblers is to assume that each of the gamblers’ fortune
processes are distributed (as random variables) in exactly the same way. That
is, if p

n

(x) denotes the probability density function of F
n

, and G
n

is any of
the other gamblers’ fortunes, with pdf q

n

(x), then we have p
n

(x) = q
n

(x) for
all n and x.

What are the consequences of this condition? The amount that the gam-
bler wins in hand n is the random variable ⇠

n

= F
n

� F
n�1

and the equal
distribution of the gamblers’ fortunes implies that the gamblers’ wins in the
nth hand are also equally distributed. From the conditions on the gambling
game described above, we must have E(⇠

n

) = 0. Think about this. Hence
we have that

E(F
n

) = E(F
n�1

+ ⇠
n

) = E(F
n�1

) + E(⇠
n

) = E(F
n�1

)

So the expected fortunes of the gambler will not change over time. This is
close to the Martingale condition. The same analysis says that if the gambler
has F

n�1

after the n � 1 hand, then he can expect to have F
n�1

after the
nth hand. That is, E(F

n

|F
n�1

) = F
n�1

. (Here E(F
n

|F
n�1

) = F
n�1

denotes
a conditional expectation, which we explain below.) This is closer to the
Martingale condition which says that E(F

n

|F
n�1

, F
n�1

, · · · , F
0

) = F
n�1

.

O Romeo, Romeo! wherefore art thou Romeo?
Deny thy father and refuse thy name;

Or, if thou wilt not, be but sworn my love,
And I’ll no longer be a Capulet.

-Juliet
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Now let me describe a very pretty application of the notion of martingale
to a simple problem. Everyone has come accross the theorem in a basic
probability course that a monkey typing randomly at a typewriter with a
probability of 1/26 of typing any given letter (we will always ignore spaces,
capitals and punctuation) and typing one letter per second will eventually
type the complete works of Shakespeare with probability 1. But how long
will it take. More particularly, let’s consider the question of how long it will
take just to type: ”O Romeo, Romeo”. Everyone recognizes this as Juliet’s
line in Act 2 scene 2 of Shakespeare’s Romeo and Juliet. Benvloio also says
this in Act 3 scene 1. So the question more mathematically is what is the
expected time for a monkey to type ”O Romeo Romeo”, ignoring spaces
and commas. This seems perhaps pretty hard. So let’s consider a couple of
similar but simpler questions and also get our mathematical juices going.

1. Flipping a fair coin over and over, what is the expected number of times
it takes to flip before getting a Heads and then a Tails: HT ?

2. Flipping a fair coin over and over, what is the expected number of times
it takes to flip two Heads in a row: HH ?

We can actually calculate these numbers by hand. Let T
1

denote the random
variable of expected time until HT and T

2

the expected time until HH.
Then we want to calculate E(T

1

) and E(T
2

). If T denotes one of these RV’s
(random variables) then

E(T ) =
1X

n=1

nP (T = n)

We then have

P (T
1

= 1) = 0
P (T

1

= 2) = P ({HT}) = 1/4
P (T

1

= 3) = P ({HHT, THT}) = 2/8
P (T

1

= 4) = P ({HHHT, THHT, TTHT}) = 3/16
P (T

1

= 5) = P ({HHHHT, THHHT,
TTHHT, TTTHT}) = 4/32

P (T
1

= 6) = P ({HHHHHT, THHHHT,
TTHHHT, TTTHHT, TTTTHT}) = 5/64

(3.1.1)
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We can see the pattern P (T
1

= n) = n�1

2

n

and so

E(T
1

) =
1X

n=2

n(n� 1)/2n

. To sum this, let’s write down the ”generating function”

f(t) =
1X

n=1

n(n� 1)tn

so that E(T
1

) = f(1/2) To be able to calculate with such generating functions
is a useful skill. First not that the term n(n� 1) is what would occur in the
general term after di↵erentiating a power series twice. On the other hand,
this term sits in front of tn instead of tn�2 so we need to multiply a second
derivative by t2. At this point, we make some guesses and then adjustments
to see that

f(t) = t2(
1X

n=0

tn)00

so it is easy to see that

f(t) =
2t2

(1� t)3

and that E(T
1

) = f(1/2) = 4.
So far pretty easy and no surprises. Let’s do E(T

2

). Here

P (T
2

= 1) = 0
P (T

2

= 2) = P ({HH}) = 1/4
P (T

2

= 3) = P ({THH}) = 1/8
P (T

2

= 4) = P ({T � THH,H � THH} = 2/16
P (T

2

= 5) = P ({TT � THH,HT � THH, TH � THH}) = 3/32
P (T

2

= 6) = P ({TTT � THH, TTH � THH, THT � THH,
HTT � THH,HTH � THH}) = 5/64

P (T
2

= 7) = P ({TTTT � THH, TTTH � THH, TTHT � THH,
THTT � THH,HTTT � THH, THTH � THH,
HTHT � THH,HTTH � THH} = 8/128

(3.1.2)
Again the pattern is easy to see: P (T

2

= n) = f
n�1

/2n where f
n

denotes
the nth Fibonacci number (Prove it!).(Recall that the Fibonacci numbers are
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defined by the recursive relationship, f
1

= 1, f
2

= 1 and f
n

= f
n�1

+ f
n�2

.)
So

E(T
2

) =
1X

n=2

nf
n�1

/2n

Writing g(t) =
P1

n=1

nf
n�1

tn we calculate in a similar manner (but more
complicated) that

g(t) =
2t2 � t3

(1� t� t2)2

and that E(T
2

) = g(1/2) = 6. A little surprising perhaps.
What is accounting for the fact that HH takes longer? A simple answer

is that if we are awaiting the target string (HT or HH) then if we succeed
to get the first letter at time n but then fail at time n + 1 to get the second
letter, the earliest we can succeed after that is n + 2 in the case of HT but
is n + 3 in the case of HH.

The same kind of analysis could in theory be done for ”OROMEOROMEO”
but it would probably be hopelessly complicated.

To approach ”OROMEOROMEO” let’s turn it into a game. Let T denote
the random variable giving me the expected time until ”OROMEOROMEO”.
I walk into a casino and sitting at a table dressed in the casino’s standard
uniform is a monkey in front of a typewriter. People are standing around the
table making bets on the letters of the alphabet. Then the monkey strikes
a key at random (it is a fair monkey) and the people win or lose according
to whether their bet was on the letter struck. If their letter came up, they
are paid o↵ at a rate of 26 to 1. The game then continues. For simplicity,
assume that a round of monkey typing takes exactly one minute. Clearly the
odds and the pay-o↵ are set up to yield a ”fair game”: this is an example of
a martingale. I know in my mathematical bones that I can not expect to do
better on average than to break even. That is:

Theorem 3.1.1. No matter what strategy I adopt, on average, I can never do
better than break even.

Eventually this will be a theorem in martingale theory (and not a very
hard one at that). Together a group of gamblers conspire together on the
following betting scheme. On the first play, the first bettor walks up to
the table and bets one Italian Lira (monkey typing is illegal in the United
States) ITL 1 that the first letter is an ”O”. If he wins, he gets ITL 26 and
bets all ITL 26 on the second play that the second letter is an ”R”. If he
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wins he bets all ITL 262 that on the third play the letter is an ”O”. Of
course if at some point he loses, all the money is confiscated and he walks
away with a net loss of the initial ITL 1. Now in addition to starting the
above betting sequence on the first play, the second bettor begins the same
betting sequence starting with the second play, that is, regardless of what
has happened on the first play, she also bets ITL 1 that the second play will
be an O, etc. One after another, the bettors (there are a lot of them) initiate
a new betting sequence at each play. If at some point one of the bettors gets
through ”OROMEOROMEO”, the game ends, and the conspirators walk
away with their winnings and losses which they share. Then they calculate
their total wins and losses.

Again, because the game is fair, the conspirators expected wins is going
to be 0. On the other hand, let’s calculate the amount they’ve won once
”OROMEOROMEO” has been achieved. Because they got through, the
betting sequence beginning ”OROMEOROMEO” has yielded ITL 2611. In
addition to this though, the sequence starting with the final ”O” in the first
ROMEO and continuing through the end has gone undefeated and yields
ITL 266. And finally the final ”O” earns an additional ITL 26. On the other
hand, at each play, ITL 1 the betting sequence initiated at that play has been
defeated, except for those enumerated above. Each of these then counts as
a ITL 1 loss. How many such losses are there? Well, one for each play of
monkeytyping. Therefore, their net earnings will be

2611 + 266 + 26� T

Since the expected value of this is 0, it means that the expected value E(T ) =
2611 + 266 + 26. A fair amount of money even in Lira.

Try this for the ”HH” problem above to see more clearly how this works.

3.2 Introducing stochastic processes

A stochastic process which is discrete in both space and time is a sequence of
random variables, defined on the same sample space (that is they are jointly
distrubuted) {X

0

, X
1

, X
2

, . . .} such that the totality of values of all the X
n

’s
combined form a discrete set. The di↵erent values that the X

n

’s can take
are called the states of the stochastic process. The subscript n in X

n

is to be
thought of as time.
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We are interested in understanding the evolution of such a process. One
way to describe such a thing is to consider how X

n

depends on X
0

, X
1

, . . . , X
n�1

.

Example 3.2.1. Let W
n

denote the position of a random walker. That is, at
time 0, W

0

= 0 say and at each moment in time, the random walker has a
probability p of taking a step to the left and a probability 1 � p of taking
a step to the right. Thus, if at time n, W

n

= k then at time n + 1 there is
probability p of being at k � 1 and a probability 1 � p of being at k + 1 at
time n + 1. We express this mathematically by saying

P (W
n+1

= j|W
n

= k) =

8
<

:

p if j = k � 1
1� p if j = k + 1

0 otherwise
(3.2.1)

In general, for a stochastic process X
n

we might specify

P (X
n+1

= j|X
n

= k
n

, X
n�1

= k
n�1

, · · · , X
0

= k
0

)

If as in the case of a random walk

P (X
n+1

= j|X
n

= k
n

, X
n�1

= k
n�1

, · · · , X
0

= k
0

) = P (X
n+1

= j|X
n

= k
n

)

the process is called a Markov process. We write

p
jk

= P (X
n+1

= k|X
n

= j)

The numbers p
jk

form a matrix (an infinite by infinite matrix if the random
variables X

n

are infinite), called the matrix of transition probabilities. They
satisfy (merely by virtue of being probabilities )

1. p
jk

� 0

2.
P

k

p
jk

= 1 for each j.

The matrix p
jk

as we’ve defined it tells us how the probabilities change from
the nth to the n + 1st step. So p

jk

a priori depends on n. If it doesn’t,
then the process is called a stationary Markov process. Let’s reiterate: p

jk

represents the probability of going from state j to state k in one time step.
Thus, if X

n

is a stationary Markov process, once we know the p
jk

the only
information left to know is the initial probability distribution of X

0

, that is
p

0

(k) = P (X
0

= k). The basic question is: Given p
0

and p
jk

what is the
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probability distribution of X
n

? Towards this end we introduce the ”higher”
transition probablilities

p(n)

jk

= P (X
n

= k|X
0

= j)

which by stationarity also equals P (X
m+n

= k|X
m

= j) the probability of
going from j to k in n steps.

Proposition 3.2.1.
p(n)

jk

=
X

h

p(n�1)

jh

p
hk

Proof:
p(n)

jk

= P (X
n

= k|X
0

= j)

Now a process that goes from state j to state k in n steps, must land some-
where on the n� 1st step. Suppose it happens to land on the state h. Then
the probability

P (X
n

= k|X
n�1

= h) = P (X
1

= k|X
0

= h) = p
hk

by stationarity. Now the probability of going from state j to state h in n� 1
steps and then going from state h to state k in one step is

P (X
n�1

= h|X
0

= j)P (X
n

= k|X
n�1

= h) = p(n�1)

jh

p
hk

Now the proposition follows by summing up over all the states one could
have landed upon on the n� 1st step. Q.E.D.

It follows by repeated application of the preceding proposition that

p(n+m)

jk

=
X

h

p(n)

jh

p(m)

hk

This is called the Chapman-Kolmogorov equation. Expressed in terms of
matrix mulitplication, it just says that if P = p

jk

denotes the matrix of
transition probabilities from one step to the next, then P n the matrix raised
to the nth power represents the higher transition probabilities and of course
P n+m = P nPm.

Now we can answer the basic question posed above. If P (X
0

= j) = p
0

(j)
is the initial probability distribution of a stationary Markov process with
transition matrix P = p

jk

then

P (X
n

= k) =
X

j

p
0

(j)p(n)

jk
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3.2.1 Generating functions

Before getting down to some examples, I want to introduce a technique for
doing calculations with random variables. Let X be a discrete random vari-
able whose states are any integer j and has distribution p(k). We introduce
its generating function

F
X

(t) =
X

k

p(k)tk

At this point we do not really pay attention to the convergence of F
X

, we will
do formal manipulations with F

X

and therefore F
X

is called a formal power
series (or more properly a formal Laurent series since it can have negative
powers of t). Here are some of the basic facts about the generating function
of X;

1. F
X

(1) = 1 since this is just the sum over all the states of the probabil-
ities, which must be 1.

2. E(X) = F 0
X

(1). Since F 0
X

(t) =
P

k

kp(k)tk�1. Now evaluate at 1.

3. Var(X) = F 00
X

(1) + F 0
X

(1) � (F 0
X

(1))2. This is an easy calculation as
well.

4. If X and Y are independent random variables, then F
X+Y

(t) = F
X

(t)F
Y

(t).

Before going on, let’s use these facts to do some computations.

Example 3.2.2. Let X be a Random variable representing a Bernoulli trial,
that is P (X = �1) = p, P (X = 1) = 1 � p and P (X = k) = 0 otherwise.
Thus F

X

= pt�1 + (1� p)t. Now a Random walk can be described by

W
n

= X
1

+ · · · + X
n

where each X
k

is an independent copy of X: X
k

represents taking a step to
the left or right at the kth step. Now according to fact 4) above, since the
X

k

are mutually independent we have

F
W

n

= F
X1FX2 · · ·FX

n

= (F
X

)n = (pt�1 + (1� p)t)n

=
nX

j=0

(
n

j)(pt�1)j((1� p)t)n�1



60 CHAPTER 3. DISCRETE TIME

=
nX

j=0

(
n

j)pj(1� p)n�jtn�2j

Hence the distribution for the random walk W
n

can be read o↵ as the co-

e�cients of the generating function. So P (W
n

= n � 2j) = (
n

j)pj(1 � p)n�j

for j = 0, 1, 2, . . . , n and is zero for all other values. (Note: This is our
third time calculating this distribution.) Also, E(W

n

) = F 0
W

n

(1). F 0
W

n

(t) =
d

dt

(pt�1 + (1 � p)t)n = n(pt�1 + (1 � p)t)n�1((1 � p) � pt�2) and evaluating
at 1 gives n(p + (1� p))((1� p)� p) = n((1� p)� p). Similarly, F 00

W

n

= n(n� 1)(pt�1 +(1� p)t)n�2((1� p)� pt�2)2 +n(pt�1 +(1� p)t)n�1(2pt�3)

and evaluating at 1 gives n(n� 1)((1� p)� p)2 + n2p. So Var(W
n

)

= F 00
W

n

(1) + F 0
W

n

(1)� F 0
W

n

(1)2

= n(n� 1)((1� p)� p)2 + 2np + n((1� p)� p)� n2((1� p)� p)2

= �n((1� p)� p)2 + 2np + n((1� p)� p)

= n((1� p)� p)(1� ((1� p)� p)) + 2np = 2pn((1� p)� p) + 2np

= 2np(1� p)� 2np2 + 2np = 2np(1� p) + 2np(1� p) = 4np(1� p)

Consider the following experiment. Roll two dice and read o↵ the sum
on them. Then flip a coin that number of times and count the number of
heads. This describes a random variable X. What is its distribution? We
can describe X mathematically as follows. Let N denote the random variable
of the sum on two dice. So according to a calculation in a previous set of
notes, P (N = n) = 1

36

(6� |7�n|) for n = 2, 3, ...12 and is 0 otherwise. Also,
let Y count the number of heads in one toss, so that P (Y = k) = 1

2

if k = 0
or 1 and is 0 otherwise. Hence our random variable X can be written as

X =
NX

j=1

Y
j

(3.2.2)

where Y
j

are independent copies of Y and note that the upper limit of the
sum is the random variable N . This is an example of a composite random
variable, that is, in general a composite random variable is one that can
be expressed by (3.2.2)where N and Y are general random variables. The
generating function of such a composite is easy to calculate.
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Proposition 3.2.2. Let X be the composite of two random variables N and
Y . Then F

X

(t) = F
N

(F
Y

(t)) = F
N

� F
Y

.

Proof:

P (X = k) =
1X

n=0

P (N = n)P (
nX

j=1

Y
j

= k)

Now, FP
n

j=1 Y

j

= (F
Y

(t))n since the Y
j

’s are mutually independent. Therefore

F
X

=
1X

n=1

P (N = n)(F
Y

(t))n = F
N

(F
Y

(t))

Q.E.D.
So in our example above of rolling dice and then flipping coins, F

N

=P
1

n=2

2 1

36

(6�|7�n|)tn and F
Y

(t) = 1/2+1/2t. Therefore F
X

(t) =
P

12

n=2

1

36

(6�
|7� n|)(1/2 + 1/2t)n from which one can read o↵ the distribution of X.

The above sort of compound random variables appear naturally in the
context of branching processes. Suppose we try to model a population (of
amoebae, of humans, of subatomic particles) in the following way. We denote
the number of members in the nth generation by X

n

. We start with a single
individual in the zeroth generation. So X

0

= 1. This individual splits into
(or becomes) X

1

individuals (o↵spring) in the first generation. The number
of o↵spring X

1

is a random variable with a certain distribution P (X
1

= k) =
p(k). p(0) is the probability that X

0

dies. p(1) is the probability that X
0

has
one descendent, p(2), 2 descendants etc. Now in the first generation we have
X

1

individuals, each of which will produce o↵spring according to the same
probability distribution as its parent. Thus in the second generation,

X
2

=
X1X

n=1

X
1,n

where X
1,n

is an independent copy of X
1

. That is, X
2

is the compound
random variable of X

1

and itself. Continuing on, we ask that in the nth
generation, each individual will produce o↵spring according to the same dis-
tribution as its ancestor X

1

. Thus

X
n

=
X

n�1X

n=1

X
1,n
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Using generating functions we can calculate the distribution of X
n

. So we
start with F

X1(t). Then by the formula for the generating function of a
compound random variable,

F
X2(t) = F

X1(FX1(t))

and more generally,

F
X

n

= F
X1 � · · · n- times � F

X1

Without generating functions, this expression would be quite di�cult.

3.3 Conditional expectation

We now introduce a very subtle concept of utmost importance to us: condi-
tional expectation. We will begin by defining it in its simplest incarnation:
expectation of a random variable conditioned on an event. Given an event
A, define its indicator to be the random variable

1
A

=

⇢
1 if ! 2 A,

0 if ! /2 A.

�

Define

E(X|A) =
E(X · 1

A

)

P (A)
.

In the discrete case, this equals

X

x

xP (X = x|A)

and in the continous case Z
xp(x|A) dx

Some basic properties of conditional expectation are

Proposition 3.3.1. (Properties of conditional expectation)

1. E(X + Y |A) = E(X|A) + E(Y |A).

2. If X is a constant c on A, then E(XY |A) = cE(Y |A).
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3. If B =
Q

n

i=1

A
i

, then

E(X|B) =
nX

i=1

E(X|A
i

)
P (A

i

)

P (B)

(Jensen’s inequality) A function f is convex if for all t 2 [0, 1] and x < y f
satisfies the inequality

f((1� t)x + ty)  (1� t)f(x) + tf(y)

Then for f convex, E(f(X)) � f(E(X)) and E(f(X)|A) � f(E(X|A)) .

If X and Y are two random variables defined on the same sample space,
then we can talk of the particular kind of event {Y = j}. Hence it makes
sense to talk of E(X|Y = j). There is nothing really new here. But a more
useful way to think of the conditional expectation of X conditioned on Y is as
a random variable. As j runs over the values of the variable Y , E(X|Y = j)
takes on di↵erent values. These are the values of a new random variable.
Thus we make the following

Definition 3.3.1. Let X and Y be two random variables defined on the
same sample space. Define a random variable called E(X|Y ) and called the
expectation of X conditioned on Y . The values of this random variable are
E(X|Y = j) as j runs over the values of Y . Finally

P [E(X|Y ) = e] =
X

{j|E(X|Y =j)=e}

P [Y = j]

More generally, if Y
0

, Y
1

, . . . , Y
n

are a collection of random variables, we
may define E(X|Y

0

= y
0

, Y
1

= y
1

, . . . , Y
n

= y
n

) and E(X|Y
0

, , Y
1

, . . . , Y
n

).
Some basic properties of the random variable E(X|Y ) are listed in the

following proposition.

Proposition 3.3.2. Let X, Y be two random variables defined on the same
sample space. Then

1. (Tower property) E(E(X|Y )) = E(X).

2. If X, Y are independent, then E(X|Y ) = E(X).

3. Letting Z = f(Y ), then E(ZX|Y ) = ZE(X|Y )
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Proof:
1.

P (E(X|Y ) = e) =
X

{j|E(X|Y =j)=e}

P (Y = j)

Then

E(E(X|Y )) =
P

e

eP (E(X|Y ) = e)
=
P

j

E(X|Y = j)P (Y = j)
=
P

j

(
P

k

kP (X = k|Y = j)) P (Y = j)
=
P

j

P
k

k(P ((X = k) \ (Y = j))/P (Y = j))P (Y = j)
=
P

j

P
k

kP ((X = k) \ (Y = j)) =
P

k

P
j

kP ((X = k) \ (Y = j))

=
P

k

kP ((X = k) \
⇣S

j

Y = j
⌘
) =

P
k

kP (X = k) = E(X)

(3.3.1)
2. If X, Y are independent, then E(X|Y ) = E(X). So

E(X|Y = j) =
P

k

kP (X = k|Y = j)
=
P

k

kP (X = k) = E(X).
(3.3.2)

This is true for all j so the conditional expectation if a constant.
3. We have

E(ZX|Y = j) =
P

k,l

klP ((Z = k) \ (X = l)|Y = j)
=
P

k,l

klP ((f(Y ) = k) \ (X = l)|Y = j)
= f(j)

P
l

lP (X = l|Y = j) = ZE(X|Y = j).
(3.3.3)

Q.E.D.
We also have an analogous statement for conditioning on a set of variables.

Proposition 3.3.3. Let X, Y
0

, . . . , Y
n

be random variables defined on the
same sample space. Then

1. (Tower property) E(E(X|Y
0

, . . . , Y
n

)) = E(X).

2. If X is independent of Y
0

, . . . , Y
n

, then E(X|Y
0

, . . . , Y
n

) = E(X).

3. Letting Z = f(Y
0

, . . . , Y
n

), then E(ZX|Y
0

, . . . , Y
n

) = ZE(X|Y
0

, . . . , Y
n

)

Proof: See exercises.
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3.4 Discrete time finance

Now let us return to the market. If S
n

denotes the value of a security at
time n, is S

n

a Martingale? There are two reasons why not. The first reason
is the time value of money. If S

n

were a Martingale, no one would buy it.
You might as well just put your money under your mattress. What about
the discounted security process? This would turn a bank account into a
Martingale. But any other security would not be. If the discounted stock
value were a Martingale, you would expect to make as much money as in
your bank account and people would just stick their money in the bank. The
second reason why the discounted stock price process is not a Martingale is
the non-existence of arbitrage opportunities.

Let’s go back to our model of the market from the last chapter. Thus we
have a vector of securities S and a pay-o↵ matrix D = (d

ij

) where security i
pays o↵ d

ij

in state j. In fact, let’s consider a very simple market consisting of
two securities, a bond S

1

and a stock S
2

. Then the value of the stock at time
1 is d

2j

if state j occurs. Under the no-arbitrage condition, there is a state
price vector  so that S = D . Setting R =

P
j

 
j

and q
j

=  
j

/R as in the
last chapter, we have

P
j

q
j

= 1 and the q
j

’s determine a probability Q on the
set of states. Now the value of the stock at time 1 is a random variable, which
we will call d

2

with respect to the probabilities Q, thus, P (d
2

= d
2j

) = q
j

.
The expected value with respect to Q of the stock at time 1 is

E
Q

(d
2

) =
X

j

d
2,j

q
j

= (D( /R))
2

= (S/R)
2

= S
2

/R

In other words, E(Rd
2

) = S
2

. That is, the expected discounted stock price
at time 1 is the same as the value at time 0, with respect to the probabilities
Q which were arrived at by the no-arbitrage assumption. This is the first
step to finding Q such that the discounted stock prices are martingales. This
is the basic phenomena that we will take advantage of in the rest of this
chapter to value derivatives.
We’ve seen that the no-arbitrage hypothesis led to the existence of a state
price vector, or to what is more or less the same thing, to a probability on the
set of states such that the expected value of the discounted price of the stock
at time 1 is the same as the stock price at time 0. The arbitrage theorem
of last chapter only gives us an existence theorem. It does not tell us how
to find Q in actual practice. For this we will simplify our market drastically
and specify a more definite model for stock movements.
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Our market will consist of a single stock S and a bond B.
Let us change notation a little. Now, at time 0, the stock is worth S

0

and
the bond is worth B

0

. At time 1, there will be only two states of nature, u
(up) or d (down). That is, at time 1 · �t, the stock will either go up to some
value Su

1

or down to Sd

1

. The bond will go to er�tB
0

.

Su

1

%
S

0

, B
0

! er�tB
0

&
Sd

1

(3.4.1)

According to our picture up there we need to find a probability Q such
that E

Q

(e�r�tS
1

) = S
0

. Let q be the probability that the stock goes up. Then
we want

S
0

= E
Q

(e�r�tS
1

) = qe�r�tSu

1

+ (1� q)e�r�tSd

1

Thus we need
q(e�r�tSu

1

� e�r�tSd

1

) + e�r�tSd

1

= S
0

So

q =
er�tS

0

� Sd

1

Su

1

� Sd

1

1� q =
Su

1

� er�tS
0

Su

1

� Sd

1

(3.4.2)

If h is a contingency claim on S, then according to our formula of last
chapter, the value the derivative is

V (h) = RE
Q

(h(S
1

))

= e�r�t(qh(Su

1

) + (1� q)h(Sd

1

))

= e�r�t

⇢✓
er�tS

0

� Sd

1

Su

1

� Sd

1

◆
h(Su

1

) +

✓
Su

1

� er�tS
0

Su

1

� Sd

1

◆
h(Sd

1

)

�

= e�r�t

⇢
h(Su

1

)

✓
er�tS

0

� Sd

1

Su

1

� Sd

1

◆
+ h(Sd

1

)

✓
Su

1

� er�tS
0

Su

1

� Sd

1

◆�
.

Let’s rederive this based on an ab initio arbitrage argument for h.
Let’s try to construct a replicating portfolio for h, that is, a portfolio

consisting of the stock and bond so that no matter whether the stock goes
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up or down, the portfolio is worth the same as the derivative. Thus, suppose
at time 0 we set up a portfolio

✓ =

✓
�
 

◆
(3.4.3)

� units of stock S
0

and  units of bond B
0

.
At time �t, the value of this portfolio is worth either �Su

1

+ er�tB
0

if the
state is u, or �Sd

1

+  er�tB
0

if the state is d. We want this value to be the
same as h(S

1

). So we solve for � and  :

�Su

1

+  er�tB
0

= h(Su

1

)
�Sd

1

+  er�tB
0

= h(Sd

1

)
(3.4.4)

Subtracting,
�(Su

1

� Sd

1

) = h(Su

1

)� h(Sd

1

).

So we find

� =
h(Su

1

)� h(Sd

1

)

Su

1

� Sd

1

while

 =
h(Su

1

)� �Su

1

er�tB
0

=
h(Su

1

)� h(S

u

1 )�h(S

d

1 )

S

u

1�S

d

1
Su

1

er�tB
0

=
h(Su

1

)Su

1

� h(Su

1

)Sd

1

� h(Su

1

)Su

1

+ h(Sd

1

)Su

1

er�tB
0

(Su

1

� Sd

1

)

=
h(Su

1

)Su

1

� h(Su

1

)Sd

1

er�tB
0

(Su

1

� Sd

1

)

Thus, the value of the portfolio at time 0 is

�S
0

+  B
0

= h(S

u

1 )�h(S

d

1 )

S

u

1�S

d

1
· S

0

+ h(S

d

1 )S

u

1�h(S

u

1 )S

d

1

e

r�t

B0(S

u

1�S

d

1 )

· B
0

=
⇣

e

r�t

(h(S

u

1 )�h(S

d

1 ))

e

r�t

(S

u

1�S

d

1 )

⌘
· S

0

+ h(S

d

1 )S

u

1�h(S

u

1 )S

d

1

e

r�t

(S

u

1�S

d

1 )

= e�r�t

⇣
h(Su

1

)
⇣

e

r�t

S0�S

d

1

S

u

1�S

d

1

⌘
+ h(Sd

1

)
⇣

S

u

1�e

r�t

S0

S

u

1�S

d

1

⌘⌘
.

(3.4.5)
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Since the value of this portfolio and the derivative are the same at time 1, by
the no-arbitrage hypothesis, they must be equal at time 0. So we’ve arrived
the value of the derivative by a somewhat di↵erent argument.
Now we move on to a multi-period model. We are interested in defining a
reasonably flexible and concrete model for the movement of stocks.
We now want to divide the time period from now, time 0 to some horizon T ,
which will often be the expiration time for a derivative, into N periods, each
of length �t so that N�t = T .
One Step Redo with �t .

Su

�t

q

%
S

0

1�q

&
Sd

�t

(3.4.6)

q =
S

0

er�t � Sd

�t

Su

�t

� Sd

�t

, 1� q =
Su

�t

� S
0

er�t

Su

�t

� Sd

�t

Then for a contigency claim h we have V (h) = e�r�tE
Q

(h).
Two Steps

•
uu

q

u

1

%
•

u

1�q

u

1! •ud

q0

%
•

1�q0

&

•d

1�q

d

1! •
du

q

d

1

&
•dd

(3.4.7)

qd

1

=
er�tSd

1�t

� Sdd

2�t

Sdu

2�t

� Sdd

2�t

, 1� qd

1

=
Sdu

2�t

� er�tSd

1�t

Sdu

2�t

� Sdd

2�t

qu

1

=
er�tSu

1�t

� Sud

2�t

Suu

2�t

� Sud

2�t

, 1� qu

1

=
Suu

2�t

� er�tSu

1�t

Suu

2�t

� Sud

2�t
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q
0

=
er�tS

0

� Sd

1�t

Su

1�t

� Sd

1�t

, 1� q
0

=
Su

1�t

� er�tS
0

Su

1�t

� Sd

1�t

Suppose h is a contingency claim, and that we know h(S
2�t

). Then we
have

h(Su

1�t

) = e�r�t(qu

1

h(Suu

2�t

) + (1� qu

1

)h(Sud

2�t

)),

h(Sd

1�t

) = e�r�t(qd

1

h(Sdu

2�t

) + (1� qd

1

)h(Sdd

2�t

)).

Finally,
h(S

0

) = e�r�t(q
0

h(Su

1�t

) + (1� q
0

)h(Sd

1�t

))

= e�r�t(q
0

(e�r�t(qu

1

h(Suu

2�t

)+(1�qu

1

)h(Sud

2�t

)))+(1�q
0

)(e�r�t(qd

1

h(Sdu

2�t

)+(1�qd

1

)h(Sdd

2�t

)))

= e�2r�t(q
0

qu

1

h(Suu

2�t

)+q
0

(1�qu

1

)h(Sud

2�t

)+(1�q
0

)qd

1

h(Sdu

2�t

)+(1�q
0

)(1�qd

1

)h(Sdd

2�t

)).

Let’s try to organize this into an N-step tree.
First, let’s notice what the coe�cients of h(S••

2�t

) are. q
0

qu

1

represents
going up twice. q

0

(1 � qu

1

) represents going up, then down, etc.. That is,
these coe�cients are the probability of ending up at a particular node of the
tree. Thus, if we define a sample space

 = {uu, ud, du, dd}

P (uu) = q
0

qu

1

, P (ud) = q
0

(1�qu

1

), P (du) = (1�q
0

)qd

1

, P (dd) = (1�q
0

)(1�qd

1

).
We check that this is a probability on the final nodes of the two step tree:

P (uu) + P (ud) + P (du) + P (dd)

= q
0

qu

1

+ q
0

(1� qu

1

) + (1� q
0

)qd

1

+ (1� q
0

)(1� qd

1

)

= q
0

(qu

1

+ 1� qu

1

) + (1� q
0

)(qd

1

+ 1� qd

1

) = q
0

+ 1� q
0

= 1.

Now h(S
2

) is a random variable depending on w
0

w
1

2  . Hence we have

V (h) = e�2r�tE
Q

(h(S
2

)).

So what’s the general case?
For N steps, the sample space is  = {w

0

w
1

. . . w
N�1

|w
i

= u or d}.

P (w
0

w
1

. . . w
N�1

) =
N�1Y

j=0

P (w
j

)
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where

P (w
0

) =

⇢
q
0

if w
0

= u
1� q

0

if w
0

= d

�

and more generally

P (w
j

) = (
q

w0···w
j�1

1

if w
j

= u
1� q

w0···w
j�1

1

ifw
j

= d

V (h) = e�rN�tE
Q

(h(S
N

))

3.5 Basic martingale theory

We will now begin our formal study of martingales.

Definition 3.5.1. Let M
n

be a stochastic process. We say M
n

is a Martingale
if

1. E(|M
n

|) < 1, and

2. E(M
n+1

|M
n

= m
n

, M
n�1

= m
n�1

, . . . ,M
0

= m
0

) = m
n

.

Noting that E(M
n+1

|M
n

= m
n

, M
n�1

= m
n�1

, . . . ,M
0

= m
0

) are the
values of a random variable which we called E(M

n+1

|M
n

, M
n�1

, . . . ,M
0

) we
may write the condition 2. Above as E(M

n+1

|M
n

, M
n�1

, . . . ,M
0

) = M
n

.
We also define a stochastic process M

n

to be a supermartingale if

1. E(|M
n

|) < 1, and

2. E(M
n+1

|M
n

= m
n

, M
n�1

= m
n�1

, . . . ,M
0

= m
0

)  m
n

(or equiva-
lently E(M

n+1

|M
n

, M
n�1

, . . . ,M
0

)  M
n

).

We say M
n

is a submartingale if

1. E(|M
n

|) < 1, and

2. E(M
n+1

|M
n

= m
n

, M
n�1

= m
n�1

, . . . ,M
0

= m
0

) � m
n

. (or equiva-
lently E(M

n+1

|M
n

, M
n�1

, . . . ,M
0

) � M
n

.

The following theorem is one expression of the fair game aspect of mar-
tingales.
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Theorem 3.5.1. If Y
n

is a

1. supermartingale, then E(Y
n

)  E(Y
m

) for n � m.

2. submartingale, then E(Y
n

) � E(Y
m

) for n � m.

3. martingale E(Y
n

) = E(Y
m

) for n,m.

Proof

1. For n � m, the tower property of conditional expectation implies
E(Y

n

) = E(E(Y
n

|Y
m

, Y
m�1

, . . . , Y
0

))  E(Y
m

).

2. is similar.

3. is implied by 1. and 2. together.

Q.E.D.
It will often be useful to consider several stochastic processes at once, or

to express a stochastic process in terms of other ones. But we will usually
assume that there is some basic or driving stochastic process and that others
are expressed in terms of this one and defined on the same sample space.
Thus we make the following more general definition of a martingale.

Definition 3.5.2. (Generalization) Let X
n

be a stochastic process. A stochas-
tic process M

0

, M
1

, . . . is a martingale relative to X
0

, . . . , X
n

if

1. E(|M
n

|) < 1 and

2. E(M
n+1

�M
n

|X
0

= x
0

, . . . , X
n

= x
n

) = 0.

Examples

1. Let X
n

= a + ⇠
1

+ · · · ⇠
n

where ⇠
i

are independent random variables
with E(|⇠

i

|) < 1 and E(⇠
i

) = 0. Then X
n

is a martingale. For
E(X

n+1

|X
0

= x
0

, . . . , X
n

= x
n

)

= E(X
n

+ ⇠
n+1

|X
0

= x
0

, . . . , X
n

= x
n

)

= E(X
n

|X
0

= x
0

, . . . , X
n

= x
n

) + E(⇠
n+1

|X
0

= x
0

, . . . , X
n

= x
n

)

Now by property 1 of conditional expectation for the first summand
and property 2 for the second this is

= X
n

+ E(⇠
n+1

) = X
n
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and thus a martingale.

A special case of this is when ⇠
i

are IID with P (⇠
i

= +1) = 1/2, and
P (⇠

i

= �1) = 1/2, the symmetric random walk.

2. There is a multiplicative analogue of the previous example. Let X
n

=
a⇠

1

· ⇠
2

· · · ⇠
n

where ⇠
i

are independent random variables with E(|⇠
i

|) <
1 and E(⇠

i

) = 1. Then X
n

is a martingale. We leave the verification
of this to you.

3. Let S
n

= S
0

+⇠
1

+· · ·+⇠
n

, S
0

constant, ⇠
i

independent random variables,
E(⇠

i

) = 0, �2(⇠
i

) = �2

i

. Set v
n

=
P

n

i=1

�2

i

. Then M
n

= S2

n

� v
n

is a
martingale relative to S

0

, . . . , S
n

.

For
M

n+1

= (S2

n+1

� v
n+1

)� (S2

n

� v
n

)
= (S

n

+ ⇠
n+1

)2 � S2

n

� (v
n+1

� v
n

)
= 2S

n

⇠
n+1

+ ⇠2

n+1

� �2

n+1

,
(3.5.1)

and thus E(M
n+1

�M
n

|S
0

, S
1

, . . . , S
n

)

= E(2S
n

⇠
n+1

+ ⇠2

n+1

� �2

n+1

|S
0

, . . . , S
n

)

= 2S
n

E(⇠
n+1

) + �2

n+1

� �2

n+1

= 0

4. There is a very general way to get martingales usually ascribed to Levy.
This will be very important to us. Let X

n

be a driving stochastic
process and let Y be a random variable defined on the same sample
space. Then we may define Y

n

= E(Y |X
n

, . . . , X
0

). Then Y
n

is a
martingale. For by the tower property of conditional expectation, we
have E(Y

n+1

|X
n

, . . . , X
0

) is by definition

E(E(Y |X
n+1

, . . . , X
0

)|X
n

, . . . , X
0

)) = E(Y |X
n

, . . . , X
0

) = Y
n

We now introduce a very useful notation. Let F(X
0

, . . . , X
n

) be the col-
lection of random variables that can be written as g(X

0

, . . . , X
n

) for some
function g of n + 1 variables. More compactly, given a stochastic process
X

k

, we let F
n

= F(X
0

, . . . , X
n

). F
n

represents all the information that is
knowable about the stochastic process X

k

at time n and we call it the filtra-
tion induced by X

n

. We write E(Y |F
n

) for E(Y |X
0

, . . . , X
n

). We restate
Proposition (3.3.3) in this notation. We also have an analogous statement
for conditioning on a set of variables.
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Proposition 3.5.1. Let X, X
0

, . . . , X
n

, . . . be a stochastic process with fil-
tration F

n

, and X a random variable defined on the same sample space.
Then

1. E(E(X|F
n

)|F
m

) = E(X|F
m

) if m  n.

2. If X, X
0

, . . . , X
n

are independent, then E(X|F
n

) = E(X).

3. Letting X 2 F
n

. So X = f(X
0

, . . . , X
n

), then E(XY |F
n

) = XE(Y |F
n

)

Definition 3.5.3. Let X
n

be a stochastic process and F
n

its filtration. We
say a process �

n

is

1. adapted to X
n

(or to F
n

) if �
n

2 F
n

for all n.

2. previsible relative to X
n

(or F
n

) if � 2 F
n�1

.

We motivate the definitions above and the following construction by
thinking of a gambling game. Let S

n

be a stochastic process representing
the price of a stock at the nth tick. Suppose we are playing a game and that
our winnings per unit bet in the nth game is X

n

�X
n

�1. Let �
n

denote the
amount of our bet on the nth hand. It is a completely natural assumption
that �

n

should only depend on the history of the game up to time n�1. This
is the previsible hypothesis. Given a bet of �

n

on the nth hand our winnings
playing this game up til time n will be

�
1

(X
1

�X
0

) + �
2

(X
2

�X
1

) + · · ·�
n

(X
n

�X
n�1

=
nX

j=1

�
j

(X
j

�X
j�1

=
nX

j=1

�
j

�X
j

This is called the martingale transform of � with respect to X
n

. We denote
it more compactly by (

P
��X)

n

. The name comes from the second theorem
below, which gives us yet another way of forming new martingales from old.

Theorem 3.5.2. Let Y
n

be a supermartingale relative to X
0

, X
1

, . . ., F
n

the
filtration associated to X

n

. Let �
n

be a previsible process and 0  �
n

 c
n

.
Then G

n

= G
0

+
P

n

m=1

�
m

(Y
m

� Y
m�1

) is an F
n

-supermartingale.
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Proof G
n+1

= G
n

+ �
n+1

(Y
n+1

� Y
n

). Thus

E(G
n+1

�G
n

)|X
0

, . . . , X
n

) = E(�
n+1

(Y
n+1

� Y
n

)|X
0

, . . . , X
n

)
= �

n+1

E(Y
n+1

� Y
n

|X
0

, . . . , X
n

)
 �

n+1

· 0  0.
(3.5.2)

Q.E.D.

Theorem 3.5.3. If �
n+1

2 F
n

, |�
n

|  c
n

, and Y
n

is a martingale relative to
X

i

, then G
n

= G
0

+
P

n

m=1

�
m

(Y
m

� Y
m�1

) is a martingale.

Definition 3.5.4. T , a random variable, is called a stopping time relative
to X

i

, if the event {T = n} is determined by X
0

, . . . , X
n

.

Example: In this example, we define a simple betting strategy of betting 1
until the stopping time tells us to stop. Thus, set

�
n

(!) =

⇢
1 if T (!) � n,
0 if T (!) < n.

�
(3.5.3)

Let’s check that �
n

2 F(X
0

, . . . , X
n

). By definition, {T (!) = n} is de-
termined by X

0

, . . . , X
n

. Now {�
n

(!) = 0} = {T  n� 1} =
S

n�1

k=0

{T = k}
is determined by X

0

, . . . , X
n�1

.
Let T ^ n be the minimum of T and n. Thus

(T ^ n)(!) =

⇢
T (!) if T (!) < n,
= n if T (!) � n.

�
(3.5.4)

Theorem 3.5.2. 1. Let Y
n

be a supermartingale relative to X
i

and T a
stopping time. Then Y

T^n

is a supermartingale.

2. Let Y
n

be a submartingale relative to X
i

and T a stopping time. Then
Y

T^n

is a submartingale.

3. Let Y
n

be a martingale relative to X
i

and T a stopping time. Then
Y

T^n

is a martingale.

Proof: Let �
n

be the previsible process defined above, i.e.,

�
n

=

⇢
1 if n  T,
0 if n > T.

�
(3.5.5)
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Then

G
n

= Y
0

+
P

n

m=1

�
m

(Y
m

� Y
m�1

)
= Y

0

+ �
1

(Y
1

� Y
0

) + �
2

(Y
2

� Y
1

) + · · · + �
n

(Y
n

� Y
n�1

)

=

⇢
Y

n

if n  T
Y

T

if n > T.

�

= Y
T^n

(3.5.6)

So it follows by the above.
Q.E.D.
Example: The following betting strategy of doubling after each loss is known
to most children and is in fact THE classic martingale, the object that gives
martingales their name.

Let P (⇠ = ±1) = 1

2

, ⇠
i

are independent, identically distributed random
variables, X

n

=
P

n

i=1

⇠
i

, which is a martingale. Now �
n

is the previsible
process defined in the following way: �

1

= 1. To define �
n

we set inductively
�

n

= 2�
n�1

if ⇠
n�1

= �1 and �
n

= 1 if ⇠
n�1

= 1. Then �
n

is previsible. Now
define and T = min{n|⇠

n

= 1}. Now consider the process G
n

= (
P
��X)

n

.
Then G

n

is a martingale by a previous theorem. On the other hand, E(G
T

) =
1, that is, when you finely win according to this betting strategy, you always
win 1. This seems like a sure fire way to win. But it requires an arbitrarily
pot to make this work. Under more realistic hypotheses, we find

Theorem 3.5.4. (Doob’s optional stopping theorem) Let M
n

be a martingale
relative to X

n

, T a stopping time relative to X
n

with P (T
⇠

< 1) = 1. If
there is a K such that |M

T^n

|  K for all n, then E(M
T

) = E(M
0

).

Proof We know that E(M
T^n

) = E(M
0

) since by the previous theorem M
T^n

is a martingale. Then

|E(M
0

)� E(M
T

)| = |E(M
T^n

)� E(M
T

)|  2KP (T > n) ! 0

as n !1.
Q.E.D.

An alternative version is

Theorem 3.5.5. If M
n

is a martingale relative to X
n

, T a stopping time,
|M

n+1

�M
n

|  K and E(T ) < 1, then E(M
T

) = E(M
0

).

We now discuss one last theorem before getting back to the finance. This
is the martingale representation theorem. According to what we proved
above, if X

n

is a martingale and �
n

is previsible then the martingale transform
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(
P
��X)

n

is also a martingale. The martingale representation theorem is
a converse of this. It gives conditions under which a martingale can be
expressed as a martingale transform of a given martingale. For this, we need
a condition on our driving martingale. Thus we define

Definition 3.5.5. A generalized random walk or binomial process is a stochas-
tic process X

n

in which at each time n, the value of X
n+1

�X
n

can only be
one of two possible values.

This like an ordinary random walk in that at every step the random walker
can take only 2 possible steps, but what the steps she can take depend on
the path up to time n. Thus

X
n+1

= X
n

+ ⇠
n+1

(X
1

, X
2

, . . . , X
n

)

Hence assume that

P (⇠
n+1

(X
1

, . . . , X
n

) = a) = p

and

P (⇠
n+1

(X
1

, . . . , X
n

) = b) = 1� p

where I am being a little sloppy in that a, b, and p are all dependent on
X

1

, . . . , X
n

. Then

E(X
n+1

|F
n

) = E(X
n

+ ⇠
n

(X
0

, . . . , X
n

)|F
n

)
= X

n

+ E(⇠
n

(X
0

, . . . , X
n

)|F
n

) = X
n

+ pa + (1� p)b
(3.5.7)

So in order that X
n

be a martingale we need

pa + (1� p)b = 0 (3.5.8)

Theorem 3.5.6. Let X
0

, X
1

, . . . be a generalized random walk with associated
filtration F

n

. Let M
n

be a Martingale relative to F
n

. Then there exists a
previsible process �

n

such that

M
n

=
nX

i=1

�
i

(X
i

�X
i�1

) = (
X

��X)
n
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Proof Since M
n

is adapted to X
n

, there exist functions f
n

such that M
n

=
f

n

(X
0

, . . . , X
n

). By induction, we need to show there exists �
n+1

2 F
n

with
M

n+1

= �
n+1

(X
n+1

�X
n

) + M
n

. Now

0 = E(M
n+1

�M
n

|F
n

)
= E(f

n+1

(X
0

, . . . , X
n+1

)� f
n

(X
0

, . . . , X
n

)|F
n

)
= E(f

n+1

(X
0

, . . . , X
n+1

|F
n

)� f
n

(X
0

, . . . , X
n

).
(3.5.9)

Now by assumption, X
n+1

can take on only 2 possible values: X
n

+ a, with
probability p, and X

n

+b, with probability 1�p. So E(f
n+1

(X
0

, . . . , X
n+1

)|F
n

)

= f
n+1

(X
0

, . . . , X
n

, X
n

+ a) · p + f
n+1

(X
0

, . . . , X
n

, X
n

+ b) · (1� p).

So continuing the earlier calculation,

0 = E(f
n+1

(X
0

, . . . , X
n+1

|F
n

)� f
n

(X
0

, . . . , X
n

)
= (f

n+1

(X
0

, . . . , X
n

, X
n

+ a)� f
n

(X
0

, . . . , X
n

)) · p
+ (f

n+1

(X
0

, . . . , X
n

, X
n

+ b)� f
n

(X
0

, . . . , X
n

)) · (1� p)

= (f

n+1(X0,...,X

n

,X

n

+a)�f

n

(X0,...,X

n

))

a

ap

+ (f

n+1(X0,...,X

n

,X

n

+b)�f

n

(X0,...,X

n

))

b

b(1� p)

= (f

n+1(X0,...,X

n

,X

n

+a)�f

n

(X0,...,X

n

))

a

ap

+ (f

n+1(X0,...,X

n

,X

n

+b)�f

n

(X0,...,X

n

))

b

(�ap).

(3.5.10)

since b(1 � p) = �ap by (3.5.8). Or equivalently, (assuming neither a nor p
are zero,

(f
n+1

(X
0

, . . . , X
n

, X
n

+ a)� f
n

(X
0

, . . . , X
n

))

a

=
(f

n+1

(X
0

, . . . , X
n

, X
n

+ b)� f
n

(X
0

, . . . , X
n

))

b

Set �
n+1

to be equal to this common value. Clearly, �
n+1

only depends on
X

0

, . . . , X
n

and is therefore previsible. Now we have to cases to consider: if
X

n+1

= X
n

+ a or X
n+1

= X
n

+ b. Both calculations are the same. So if
X

n+1

= X
n

+ a then

�
n+1

(X
n+1

�X
n

) + M
n

= �
n+1

a + M
n

= M
n+1

Q.E.D.
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3.6 Pricing a derivative

We now discuss the problem we were originally out to solve: to value a
derivative. So suppose we have a stock whose price process we denote by S

n

,
where each tick of the clock represents some time interval �t. We will assume,
to be concrete, that our riskless bond is given by the standard formula,
B

n

= enr�tB
0

. We use the following notation. If V
n

represents some price
process, then Ṽ

n

= e�nr�tV
n

is the discounted price process. Suppose h
denotes the payo↵ function from a derivative on S

n

.
There are three steps to pricing h.
Step 1: Find Q such that S̃

n

= e�rn�tS
n

is a Q-martingale. Let F
n

denote
the filtration corresponding to S̃.
Step 2: Set Ṽ

n

= E(e�rN�th(S
N

)|F
n

), then Ṽ
n

is a martingale as well. By
the martingale representation theorem there exists a previsible �

i

such that

Ṽ
n

= V
0

+
nX

i=1

�
i

(S̃
i

� S̃
i�1

).

Step 3: Construct a self-financing hedging portfolio. Just as in the one
period case, we will form a portfolio ⇧ consisting of the stock and bond.
Thus ⇧

n

= �
n

S
n

+  
n

B
n

, where B
n

= ern�tB
0

. So ⇧̃
n

= �
n

S̃
n

+  
n

B
0

. We
require two conditions on ⇧.

1. �
n

and  
n

should be previsible. From a financial point of view this is a
completely reasonable assumption, since decisions about what to hold
during the nth tick must be made prior to the nth tick.

2. The portfolio ⇧ should be self financing. This too is financially justified.
In order for the portfolio to be viewed as equivalent to the claim h, it
must act like the claim. The claim needs no infusion of money and
provides no income until expiration. And this is also what we require
of the portfolio.

The self-financing condition is derived from the following considerations. Af-
ter tick n � 1 the protfolio is worth ⇧

n�1

= �
n�1

S
n�1

+  
n�1

B
n�1

Between
tick n�1 and n we readjust the portfolio in anticipation of the nth tick. But
we only want to use the resources that are available to us via the portfolio
itself. Also, between the n � 1st and nth tick, the stock is still worth S

n�1

.
Therefore we require

(SFC1) �
n

S
n�1

+  
n

B
n�1

= �
n�1

S
n�1

+  
n�1

B
n�1

.
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Another equivalent formulation of the self-financing condition is arrived at
by

(�⇧)
n

= ⇧
n

� ⇧
n�1

= �
n

S
n

+  
n

B
n

� (�
n�1

S
n�1

+  
n�1

B
n�1

)
= �

n

S
n

+  
n

B
n

� (�
n

S
n�1

+  
n

B
n�1

)
= �

n

(S
n

� S
n�1

)�  
n

(B
n

�B
n�1

)
= �

n

(�S)
n

+  
n

(�B)
n

(3.6.1)

So we have

(SCF2) (�⇧)
n

= �
n

(�S)
n

+  
n

(�B)
n

.

Now we have Ṽ
n

= E
Q

(e�rN�th(S
N

)|F
n

) and we can write

Ṽ
n

= V
0

+
nX

i=1

�
i

�S̃
i

,

for some previsible �
i

. Now we want ⇧̃
n

= �
n

S̃
n

+  
n

B
0

to equal Ṽ
n

. So set

 
n

= (Ṽ
n

� �
n

S̃
n

)/B
0

or equivalently
 

n

= (V
n

� �
n

S
n

)/B
n

Clearly, ⇧̃
n

= �
n

S̃
n

+  
n

B
0

= Ṽ
n

.
We now need to check two things:

1. previsibility of �
n

and  
n

;

2. self-financing of the portfolio.

1. Previsibility: �
n

is previsible by the martingale representation theorem.
As for  

n

, we have

 
n

=
Ṽ

n

� �
n

S̃
n

B
0

=
�

n

(S̃
n

� S̃
n�1

) +
P

n�1

j=1

�
j

(S̃
j

� S̃
j�1

)� �
n

S̃
n

B
0

=
��

n

S̃
n�1

+
P

n�1

j=1

�
j

(S̃
j

� S̃
j�1

)

B
0
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which is manifestly independent of S̃
n

, hence  
n

is previsible.
2. Self-financing: We need to verify

�
n

S
n�1

+  
n

B
n�1

= �
n�1

S
n�1

+  
n�1

B
n�1

or what is the same thing

(SFC3) (�
n

� �
n�1

)S̃
n�1

+ ( 
n

�  
n�1

)B
0

= 0

We calculate the right term ( 
n

�  
n�1

)B
0

= (
Ṽ

n

� �
n

S̃
n

B
0

� Ṽ
n�1

� �
n�1

S̃
n�1

B
0

)B
0

= Ṽ
n

� Ṽ
n�1

+ �
n�1

S̃
n�1

� �
n

S̃
n

= �
n

(S̃
n

� S̃
n�1

) + �
n�1

S̃
n�1

� �
n

S̃
n

= �(�
n

� �
n�1

)S̃
n�1

which clearly implies (SFC3).
So finally we have constructed a self-financing hedging strategy for the deriva-
tive h. By the no-arbitrage hypothesis, we must have that the value of h
at time n (including time 0 or now) is V (h)

n

= ⇧
n

= V
n

= ern�tṼ
n

=
ern�tE

Q

(e�rN�th(S
N

))
= e�r(N�n)�tE

Q

(h(S
N

))

3.7 Dynamic portfolio selection

In this section we will use our martingale theory and derivative pricing theory
to solve a problem in portfolio selection. We will carry this out in a rather
simplified situation, but the techniques are valid in much more generality.

Thus suppose that we want to invest in a stock, S
n

and the bond B
n

.
In our first go round, we just want to find a portfolio ⇧

n

= (�
n

, 
n

) which
maximizes something. To maximize the expected value of ⇧

N

where N rep-
resents the time horizon, will just result in investing everything in the stock,
because it has a higher expected return. This does not take into account
our aversion to risk. It is better to maximize E(U(⇧

n

)) where U is a (dif-
ferentiable) utility function that encodes our risk aversion. U is required to
satisfy two conditions:
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1. U should be increasing, which just represents that more money is better
than less, and means U 0(x) > 0

2. U 0 should be decreasing, that is U 00 < 0 which represents that the
utility of the absolute gain is decreasing, that is the utility of going
from a billion dollars to a billion and one dollars is less than the utility
of going from one hundred dollars to one hundred and one dollars.

Some common utility functions are

U
0

(x) = ln(x)

U
p

(x) =
xp

p
for 0 6= p < 1

(3.7.1)

We will carry out the problem for U(x) = U
0

(x) = ln(x) and leave the
case of U

p

(x) as a problem.
So our problem is to now maximize E

P

(ln(⇧
n

)) but we have constraints.
Here P represents the real world probabilities, since we want to maximize
in the real world, not the risk neutral one. First, want that the value of
our portfolio at time 0 is the amount that we are willing to invest in it. So
we want ⇧

0

= W
0

for some initial wealth W
0

. Second, if we want to let
this portfolio go, with no other additions or withdrawals, then we want it
to be self financing. Thus ⇧

n

should satisfy SFC. And finally, for ⇧
n

to be
realistically tradeable, it also must satisfy that it is previsible.

In chapter 3 we saw that there was an equivalence between two sets of
objects:

1. Self-financing previsible portfolio processes ⇧
n

and

2. derivatives h on the stock S.

If in addition we want the value of the portfolio to satisfy ⇧
0

= W
0

then our
problem

max(E
P

(ln(⇧
N

))) subject to ⇧
0

= 0

can be reformulated as

max(E
P

(ln(h))) subject to the value of h at time 0 is W
0
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And now we may use our derivative pricing formula to look at this condition,
since the value of a derivative h at time 0 is

E
Q

(exp(�rT )h)

where Q is the risk neutral probabilities. Thus the above problem becomes

max(E
P

(ln(h))) subject to E
Q

(exp(�rT )h)) = W
0

Now we are in a position where we are really using two probabilities at the
same time. We need the following theorem which allows us to compare them.

Theorem 3.7.1. (Radon-Nikodym) Given two probabilities P and Q assume
that if P (E) = 0 then Q(E) = 0 for any event E. Then there exists a random
variable ⇠ such that

E
Q

(X) = E
P

(⇠X)

for any random variable X.

Proof. In our discrete setting this theorem is easy. For each outcome !, set
⇠(!) = Q(!)/P (!), if P (!) 6= 0 and 0 otherwise. Then

E
Q

(X) =
X

!

X(!)Q(!)

=
X

!

X(!)P (!)
Q(!)

P (!)
= E

P

(⇠X)

So now our problem is

max(E
P

(ln(h))) subject to E
P

(⇠ exp(�rT )h)) = W
0

We can now approach this extremal problem by the method of Lagrange
multipliers.

According to this method, to find an extremum of the function

max(E
P

(ln(h))) subject to E
P

(⇠ exp(�rT )h)) = W
0

we introduce the mutliplier �. And we solve

d

d✏
|
✏=0

(E
P

(ln(h + ✏v)))� �E
P

(⇠ exp(�rT )(h + ✏v))) = 0
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for all random variables v. Now the left hand side is

E
P

(
d

d✏
|
✏=0

ln(h + ✏v))� �E
P

(
d

d✏
|
✏=0

⇠ exp(�rT )(h + ✏v)) =

E
P

(
1

h
v � �⇠ exp(�rT )v) =

E
P

([
1

h
� �⇠ exp(�rT )]v) =

(3.7.2)

and we want this to be 0 for all random variables v. In order for this expec-
tation to be 0 for all v, it must be the case that

1

h
� �⇠ exp(�rT ) = 0

almost surely. Hence h = exp(rT )/(�⇠). To calculate � we put h back into
the constraint: W

0

= E
P

(⇠ exp(�rT )h)

=E
P

(⇠ exp(�rT ) · exp(rT )/(�⇠))

=E
P

(1/�)
(3.7.3)

So � = 1/W
0

and thus finally we have

h = W
0

exp(rT )/⇠

To go further we need to write down a specific model for the stock. Thus
let X

1

, X
2

, . . . , be IID with law P (X
j

= ±1) = 1/2. Set S
0

be the initial
value of the stock and inductively

S
n

= S
n�1

(1 + µ · �t + �
p
�tX

n

)

In other words, S
n

is just a binomial stock model with

u = (1 + µ · �t + �
p
�t)

and
d = (1 + µ · �t� �

p
�t)

The sample space for this process can be taken to be sequences x
1

x
2

x
3

· · ·x
N

where x
i

is u or d representing either an up move or a down move.
Then by our formula for the risk neutral probability

q =
exp r�t� d

u� d
=

r�t� (µ�t� �
p
�t)

(µ�t + �
p
�t)� (µ�t� �

p
�t)
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up to first order in �t. So

q =
1

2

✓
1 + (

r � µ

�
)
p
�t

◆

and

1� q =
1

2

✓
1� (

r � µ

�
)
p
�t

◆

This then determines the random variable ⇠ in the Radon-Nikodym theorem,
3.7.1:

⇠(x
1

x
2

x
3

· · ·x
N

) = ⇠
1

(x
1

)⇠
2

(x
2

) · · · ⇠
N

(x
N

)

where x
i

denotes either u or d and

⇠
n

(u) =
q

p
=

✓
1 + (

r � µ

�
)
p
�t

◆
(3.7.4)

and

⇠
n

(d) =
1� q

1� p
=

✓
1� (

r � µ

�
)
p
�t

◆

We now know which derivative has as its replicating portfolio the portfolio
that solves our optimization problem. We now calculate what the replicating
portfolio actually is. For this we use our theory from chapter 3 again. This
tells us that we take

eV
n

= E
Q

(exp(�rT )h|F
n

)

Then by the martingale representation theorem there is a previsible process
�

n

such that

eV
n

= eV
0

+
nX

k=1

�
k

(eS
k

� eS
k�1

)

Moreover, it tells us how pick �
n

,

�
n

=
eV

n

� eV
n�1

eS
n

� eS
n�1

Now let’s recall that by the fact that eS
n

is a martingale with respect to Q

eS
n�1

= E
Q

(eS
n

|F
n�1

) = q eSu

n

+ (1� q)eSd

n
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where eSu

n

denotes the value of eS
n

if S takes an uptick at time n. Similarly,
we have

eV
n�1

= E
Q

(eV
n

|F
n�1

) = qeV u

n

+ (1� q)eV d

n

From this, we see that if S takes an uptick at time n that

�
n

=
eV

n

� eV
n�1

eS
n

� eS
n�1

=
eV u

n

� (qeV u

n

+ (1� q)eV d

n

)
eSu

n

� (q eSu

n

+ (1� q)eSd

n

)
=
eV u

n

� eV d

n

eSu

n

� eSd

n

A similar check will give the same exact answer if S took a downtick at time
n. (After all, �

n

must be previsible and therefore independent of whether S
takes an uptick or downtick at time n.) Finally let’s remark that �

n

can be
expressed in terms of the undiscounted prices

�
n

=
eV u

n

� eV d

n

eSu

n

� eSd

n

=
V u

n

� V d

n

Su

n

� Sd

n

since both the numerator and the denominator are expressions at the same
time n and therefore the discounting factor for the numerator and the de-
nominator cancel.

Now we use the following refinement of the Radon-Nikodym theorem.

Theorem 3.7.2. Given two probabilities P and Q assume that if P (E) = 0
then Q(E) = 0 for any event E. Let ⇠ be the random variable such that

E
Q

(X) = E
P

(⇠X)

for any random variable X. Then for any event A, we have

E
Q

(X|A) =
E

P

(⇠X|A)

E
P

(⇠|A)

I will ask you to prove this.
From this theorem it follows that

eV
n

= E
Q

(eh|F
n

) =
E

P

(⇠eh|F
n

)

E
P

(⇠|F
n

)

Therefore we see that

eV
n

=
eV

n�1

⇠
n

(x
n

)
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recalling that x
n

denotes the nth tick and ⇠
n

is given by (3.7.4).

Now we are ready to finish our calculation. eV
n

=
e
V

n�1

⇠

n

(x

n

)

so

eV u

n

=
eV

n�1

⇠
n

(u)
=

eV
n�1⇣

1 + ( r�µ

�

)
p
�t
⌘

eV d

n

=
eV

n�1

⇠
n

(d)
=

eV
n�1⇣

1� ( r�µ

�

)
p
�t
⌘

We also have
Su

n

= S
n�1

(1 + µ�t + �
p
�t)

so
eSu

n

= eS
n�1

(1 + (µ� r)�t + �
p
�t)

up to first order in �t. Similarly

eSd

n

= eS
n�1

(1 + (µ� r)�t� �
p
�t)

to first order in �t. So we have

�
n

=
eV u

n

� eV d

n

eSu

n

� eSd

n

=

eV
n�1

✓
1

(1+(

r�µ

�

)

p
�t)
� 1

(1�(

r�µ

�

)

p
�t)

◆

eS
n�1

(2�
p
�t)

=
eV

n�1

eS
n�1

8
<

:

⇣
1� ( r�µ

�

)
p
�t
⌘
�
⇣
1 + ( r�µ

�

)
p
�t
⌘

�
1� ( r�µ

�

)2�t
�
2�
p
�t

9
=

;

=
eV

n�1

eS
n�1

(
�

2( r�µ

�

)
p
�t

2�
p
�t

)

(3.7.5)

up to terms of order �t. So we have

�
n

=
eV

n�1

(µ�r

�

2 )

eS
n�1

=
V

n�1

(µ�r

�

2 )

S
n�1

(3.7.6)

the last equality is because the quotient of the two discounting factors cancel.
V

n�1

represents the value of the portfolio at time n � 1, and �
n

represents
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the number of shares of stock in this portfolio. Hence the amount of money
invested in the stock is �

n

S
n�1

= (µ�r

�

2 )V
n�1

. Thus formula (3.7.6) expresses
the fact that at every tick, you should have the proportion µ�r

�

2 of your port-
folio invested in the stock.

Over the 50 year period from 1926 to 1985, the S&P 500 has had excess
return µ� r over the short term treasury bills of about .058 with a standard
deviation of � of .216. Doing the calculation with the values above yields
.058/(.216)2 = 1.23 = 123%. That is, with log utility, the optimal portfolio
is one where one invests all ones wealth in the S&P 500, and borrows an
additional 23% of current wealth and invests it also in the S&P.
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3.8 Exercises

1. Let S
0

, Su

1

, Sd

1

be as in class, for the one-step binomial model. For
the pseudo-probabilities q of going up and 1� q of going down that we
calculated in class, what is E

Q

(S
1

).

2. We arrived at the following formula for discounting. If B is a bond
with par value 1 at time T , then at time t < T the bond is worth
exp(�r(T � t)) assuming constant interest rates. Now assume that
interest rates are not constant but are described by a known function
of time r(t). Recalling the derivation of the formula above for constant
interest rate, calculate the value of the same bond under the interest
rate function r(t). Your answer should have an integral in it.

3. A fair die is rolled twice. Let X denote the sum of the values. What is
E(X|A) where A is the event that the first roll was a 2.

4. Toss a nickel, a dime and a quarter. Let B
i

denote the event that i of
the coins landed heads up, i = 0, 1, 2, 3. Let X denote the sum of the
amount shown, that is, a coin says how much it is worth only on the
tales side, so X is the sum of the values of the coins that landed tales
up. What is E(X|B

i

).

5. Let X be a random variable with pdf p(x) = ↵ exp(�↵x), (a continuous
distribution.) Calculate E(X|{X � t}).

In the next three problems calculate E(X|Y ) for the two random vari-
ables X and Y . That is, describe E(X|Y ) as a function of the values
of Y . Also, construct the pdf for this random variable.

6. A die is rolled twice. X is the sum of the values, and Y is the value on
the first roll.

7. From a bag containing four balls numbered 1, 2, 3 and 4 you draw two
balls. If at least one of the balls is numbered 2 you win $1 otherwise
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you lose a $1. Let X denote the amount won or lost. Let Y denote the
number on the first ball chosen.

8. A bag contains three coins, but one of them is fake and has two heads.
Two coins are drawn and tossed. Let X be the number of heads tossed
and Y denote the number of honest coins drawn.

9. Let W
n

denote the symmetric random walk starting at 0, that is p = 1/2
and W

0

= 0. Let X denote the number of steps to the right the random
walker takes in the first 6 steps. Calculate

(a) E(X|W
1

= �1).

(b) E(X|W
1

= 1).

(c) E(X|W
1

= 1, W
2

= �1)

(d) E(X|W
1

= 1, W
2

= �1, W
3

= �1)

10. We’ve seen that if ⇠
n

are independent with expectations all 0, then

M
n

=
nX

j=1

⇠
j

is a Martingale. It is not necessary for the ⇠
j

’s to be independent.
In this exercise you are asked to prove that, though they may not be
independent, they are uncorrelated. Thus, let M

n

be a Martingale and
let ⇠

j

= M
j

�M
j�1

be its increments. Show

(a) E(⇠
j

) = 0 for all j.

(b) E(⇠
j

⇠
k

) = 0 for all j 6= k. (This means that ⇠
j

and ⇠
k

have 0
covariance, since their expectations are 0.) (Hint: You will have
to use several of the properties of conditional expectations.)

In the following three problems, you are asked to derive what is called
the gambler’s ruin using techniques from Martingale theory.

Suppose a gambler plays a game repeatedly of tossing a coin with prob-
ability p of getting heads, in which case he wins $1 and 1� p of getting
tails in which case he loses $1. Suppose the gambler begins with $a



90 CHAPTER 3. DISCRETE TIME

and keeps gambling until he either goes bankrupt or gets $b, a < b.
Mathematically, let ⇠

j

, j = 1, 2, 3, . . . be IID random variables with
distribution P (⇠

j

= 1) = p and P (⇠
j

= �1) = 1� p, where 0 < p < 1.
Let S

n

denote the gamblers fortune after the nth toss, that is

S
n

= a + ⇠
1

+ · · · + ⇠
n

Define the stopping time, T = min{n|S
n

= 0 or b} that is, T is the
time when the gambler goes bankrupt or achieves a fortune of b. Define
A

n

= S
n

� n(2p� 1) and M
n

= (1�p

p

)S

n .

11. Show A
n

and M
n

are Martingales.

12. Calculate P (S
T

= 0), the probability that the gambler will eventually
go bankrupt, in the following way. Using Doob’s optional stopping
theorem, calculate E(M

T

). Now use the definition of E(M
T

) in terms
of P (S

T

= j) to express P (S
T

= 0) in terms of E(M
T

) and solve for
P (S

T

= 0).

13. Calculate E(S
T

).

14. Calculate E(T ) the expected time till bust or fortune in the follow-
ing way: calculate E(A

T

) by the optional stopping theorem. Express
E(A

T

) in terms of E(S
T

) and E(T ). Solve for E(T ).

In the following problems, you are asked to find an optimal betting
strategy using Martingale methods.

Suppose a gambler is playing a game repeatedly where the winnings of
a $1 bet pay-o↵ $1 and the probability of winning each round is p > 1/2
is in the gambler’s favor. (By counting cards, blackjack can be made
such a game.) What betting strategy should the gambler adopt. It is
not hard to show that if the gambler wants to maximize his expected
fortune after n trials, then he should bet his entire fortune each round.
This seems counter intuitive and in fact doesn’t take into much account
the gambler’s strong interest not to go bankrupt. It turns out to make
more sense to maximize not ones expected fortune, but the expected
value of the logarithm his fortune.

As above, let ⇠
j

be IID with P (⇠
j

= 1) = p and P (⇠
j

= �1) = 1 � p
and assume this time that p > 1/2. Let F

n

denote the fortune of the
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gambler at time n. Assume the gambler starts with $a and adopts a
betting strategy �

j

, (a previsible process), that is, in the jth round he
bets $�

j

. Then we can express his fortune

F
n

= a +
nX

j=1

�
j

⇠
j

We assume that 0 < �
n

< F
n�1

, that is the gambler must bet at least
something to stay in the game, and he doesn’t ever want to bet his
entire fortune. Let e = p ln(p) + (1� p) ln(1� p) + ln 2.

15. Show L
n

= ln(F
n

)�ne is a super Martingale and thus E(ln(F
n

/F
0

)) 
ne.

16. Show that for some strategy, L
n

is a Martingale. What is the strategy?
(Hint: You should bet a fixed percentage of your current fortune.)

17. Carry out a similar analysis to the above using the utility function
U

p

(x) = x

p

p

, p < 1 not equal to 0. Reduce to terms of order �t. You
will have to use Taylor’s theorem. Your answer should not have a �t in
it.
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Chapter 4

Stochastic processes and
finance in continuous time

In this chapter we begin our study of continuous time finance. We could
develop it similarly to the model of chapter 3 using continuous time martin-
gales, martingale representation theorem, change of measure, etc. But the
probabilistic infra structure needed to handle this is more formidable. An ap-
proach often taken is to model things by partial di↵erential equations, which
is the approach we will take in this chapter. We will however discuss contin-
uous time stochastic processes and their relationship to partial di↵erential
equations in more detail than most books.

We will warm up by progressing slowly from stochastic processes discrete
in both time and space to processes continuous in both time and space.

4.1 Stochastic processes continuous in time,
discrete in space

We segue from our completely discrete processes by now allowing the time
parameter to be continuous but still demanding space to be discrete. Thus
our second kind of stochastic process we will consider is a process X

t

where
the time t is a real-valued deterministic variable and at each time t, the
sample space  of the random variable X

t

is a (finite or infinite) discrete set.
In such a case, a state X of the entire process is described as a sequence of
jump times (⌧

1

, ⌧
2

, . . .) and a sequence of values of X (elements of the common

93
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discrete state space) j
0

, j
1

, . . .. These describe a ”path” of the system through
S given by X(t) = j

0

for 0 < t < ⌧
1

, X
t

= j
1

for ⌧
1

< t < ⌧
2

, etc... Because
X moves by a sequence of jumps, these processes are often called ”jump”
processes.

Thus, to describe the stochastic process, we need, for each j 2 S, a contin-
uous random variable F

j

that describes how long it will be before the process
(starting at X = j) will jump, and a set of discrete random variables Q

j

that
describe the probabilities of jumping from j to other states when the jump
occurs. We will let Q

jk

be the probability that the state starting at j will
jump to k (when it jumps), so

X

k

Q
jk

= 1 and Q
jj

= 0

We also define the function F
j

(t) to be the probability that the process
starting at X = j has already jumped at time t, i.e.,

F
j

(t) = P (⌧
1

< t |X
0

= j).

All this is defined so that

1.
P (⌧

1

< t, X
⌧1 = k|X

0

= j) = F
j

(t)Q
jk

(4.1.1)

(this is an independence assumption: where we jump to is independent
of when we jump).

Instead of writing P (. . . |X
0

= j), we will begin to write P
j

(. . . ).

We will make the usual stationarity and Markov assumptions as follows:
We assume first that

2.
P

j

(⌧
1

< s,X
⌧1 = k, ⌧

2

� ⌧
1

< t, X
⌧2 = l)

= P (⌧
1

< s,X
⌧1 = k, ⌧

2

� ⌧
1

< t, X
⌧2 = l |X

0

= j)

= F
j

(s)Q
jk

F
k

(t)Q
kl

.

It will be convenient to define the quantity P
jk

(t) to be the probability
that X

t

= k, given that X
0

= j, i.e.,

P
jk

(t) = P
j

(X
t

= k).
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3. The Markov assumption is

P (X
t

= k|X
s1 = j

1

, . . . , X
s

n

= j
n

, X
s

= j) = P
jk

(t� s).

The three assumptions 1, 2, 3 will enable us to derive a (possibly infinite)
system of di↵erential equations for the probability functions P

jk

(t) for j and
k 2 S. First, the stationarity assumption M1 tells us that

P
j

(⌧
1

> t + s | ⌧
1

> s) = P
j

(⌧
1

> t).

This means that the probability of having to wait at least one minute more
before the process jumps is independent of how long we have waited already,
i.e., we can take any time to be t = 0 and the rules governing the process
will not change. (From a group- theoretic point of view this means that the
process is invariant under time translation). Using the formula for conditional
probability (P (A|B) = P (A \ B)/P (B)), the fact that the event ⌧

1

> t + s
is a subset of the event ⌧

1

> s, we translate this equation into

1� F
j

(t + s)

1� F
j

(s)
= 1� F

j

(t)

This implies that the function 1-F
j

(t) is a multiplicative function, i.e., it
must be an exponential function. It is decreasing since F

j

(t) represents the
probability that something happens before time t, and F

j

(0)=0, so we must
have that 1-F

j

(t)=e�q

j

t for some positive number q
j

. In other words,
F

j

is exponentially distributed with probability density function

f
j

(t) = q
j

e�q

j

t for t � 0

To check this, note that

P
j

(⌧
1

> t) = 1� F
j

(t) =

Z 1

t

q
j

e�q

j

sds = e�q

j

t

so the two ways of computing F
j

(t) agree .
The next consequence of our stationarity and Markov assumptions are the

Chapman-Kolmorgorov equations in this setting:

P
jk

(t + s) =
X

l2S

P
jl

(t)P
lk

(s).
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They say that to calculate the probability of going from state j to state k
in time t + s, one can sum up all the ways of going from j to k via any l at
the intermediate time t. This is an obvious consistency equation, but it will
prove very useful later on.

Now we can begin the calculations that will produce our system of di↵er-
ential equations for P

jk

(t). The first step is to express P
jk

(t) based on the
time of the first jump from j. The result we intend to prove is the following:

P
jk

(t) = �
jk

e�q

j

t +

Z
t

0

q
j

eq

j

s

 
X

l 6=j

Q
jl

P
lk

(t� s)

!
ds

As intimidating as this formula looks, it can be understood in a fairly intuitive
way. We take it a term at a time:
�
jk

e�q

j

t: This term is the probability that the first jump hasn’t happened
yet, i.e., that the state has remained j from the start. That is why the
Kronecker delta symbol is there (recall that �

jk

= 1 if j = k and = 0 if j is
di↵erent from k). This term is zero unless j = k, in which case it gives the
probability that ⌧

1

> t, i.e., that no jump has occurred yet.
The integral term can be best understood as a ”double sum”, and then

by using the Chapman Kolmorgorov equation. For any s between 0 and
t, the definition of f

j

(t) tells us that the probability that the first jump
occurs between time s and time s+ds is (approximately) f

j

(s)ds = q
j

e�q

j

sds
(where the error in the approximation goes to zero faster than ds as ds
goes to zero). Therefore, the probability that for l di↵erent from j, the first
jump occurs between time s and time s+ds and the jump goes from j to l
is (approximately) q

j

e�q

j

sQ
jl

ds. Based on this, we see that the probability
that the first jump occurs between time s and time s+ds, and the jump goes
from j to l, and in the intervening time (between s and t) the process goes
from l to k is (approximately)

q
j

e�q

j

sQ
jl

P
lk

(t� s)ds

To account for all of the ways of going from j to k in time t, we need to add
up these probabilities over all possible times s of the first jump (this gives an
integral with respect to ds in the limit as ds goes to 0), and over all possible
results l di↵erent from j of the first jump. This reasoning yields the second
term of the formula.

We can make a change of variables in the integral term of the formula: let
s be replaced by t-s. Note that this will transform ds into -ds, but it will
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also reverse the limits of integration. The result of this change of variables
is (after taking out factors from the sum and integral that depend neither
upon l nor upon s) :

P
jk

(t) = �
jk

e�q

j

t + q
j

e�q

j

t

Z
t

0

eq

j

s

 
X

l 6=j

Q
jl

P
lk

(s)

!
ds

= e�q

j

t

 
�
jk

+ q
j

Z
t

0

eq

j

s

 
X

l 6=j

Q
jl

P
lk

(s)

!
ds

!

Now P
jk

(t) is a continuous function of t because it is defined as the product
of a continuous function with a constant plus a constant times the integral
of a bounded function of t (the integrand is bounded on any bounded t
interval). But once P

jk

is continuous, we can di↵erentiate both sides of the
last equation with respect to t and show that P

jk

(t) is also di↵erentiable.
We take this derivative (and take note of the fact that when we di↵erentiate

the first factor we just get a constant times what we started with) using the
fundamental theorem of calculus to arrive at:

P 0
jk

(t) = �q
j

P
jk

(t) + q
j

X

l 6=j

Q
jl

P
lk

(t).

A special case of this di↵erential equation occurs when t=0. Note if we
know that X

0

= j, then it must be true that P
jk

(0) = �
jk

. This observation
enables us to write:

P 0
jk

(0) = �q
j

P
jk

(0) + q
j

X

l 6=j

Q
jl

P
lk

(0)

= �q
j

�
jk

+ q
j

X

l 6=j

Q
jl

�
lk

= �q
j

�
jk

+ q
j

Q
jk

.

One last bit of notation! Let q
jk

= P 0
jk

(0). So q
jj

= �q
j

and q
jk

= q
j

Q
jk

if
j 6= k. (Note that this implies that

X

k 6=j

q
jk

= q
j

= �q
jj
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so the sum of the q
jk

as k ranges over all of S is 0. the constants q
jk

a re
called the infinitesimal parameters of the stochastic process.

Given this notation, we can rewrite our equation for P 0
jk

(t) given above as
follows:

P 0
jk

(t) =
X

l2S

q
jl

P
lk

(t)

for all t > 0. This system of di↵erential equations is called the backward
equation of the process.

Another system of di↵erential equations we can derive is the forward equa-
tion of the process. To do this, we di↵erentiate both sides of the Chapman
Kolmogorov equation with respect to s and get

P 0
jk

(t + s) =
X

l2S

P
jl

(t)P 0
lk

(s)

If we set s=0 in this equation and use the definition of q
jk

, we get the forward
equation:

P 0
jk

(t) =
X

l2S

q
lk

P
jl

(t).

4.2 Examples of Stochastic processes contin-
uous in time, discrete in space

The simplest useful example of a stochastic process that is continuous in time
but discrete in space is the Poisson process. The Poisson process is a special
case of a set of processes called birth processes. In these processes, the sample
space for each random variable X

t

is the set of non-negative integers, and for
each non-negative integer j, we choose a positive real parameter �

j

which will
be equal to both q

j,j+1

and �q
j

. Thus, in such a process, the value of X can
either jump up by 1 or stay the same. The time until the process jumps up
by one, starting from X=j, is exponentially distributed with parameter �

j

.
So if we think of X as representing a population, it is one that experiences
only births (one at a time) at random times, but no deaths.

The specialization in the Poisson process is that �
j

is chosen to have the
same value, �, for all j. Since we move one step to the right (on the j-axis)
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according to the exponential distribution, we can conclude without much
thought that

P
jk

(t) = 0 for k < j and t > 0

and that
P

jj

(t) = e��t

for all t > 0. To learn any more, we must consider the system of di↵erential
equations (the ”forward equations”) derived in the preceding lecture.

Recall that the forward equation

P 0
jk

(t) =
X

l2S

q
lk

P
jl

(t)

gave the rate of change in the probability of being at k (given that the process
started at j) in terms of the probabilities of jumping to k from any l just at
time t (the terms of the sum for l 6= k) and (minus) the probability of already
being at k an d jumping away just at time t (recall that q

kk

is negative.
For the Poisson process, the forward equations simplify considerably, be-

cause q
jk

is nonzero only if j = k or if k = j + 1. And for these values we
have:

q
jj

= �q
j

= �� and q
j,j+1

= �

Therefore the forward equation reduces to:

P 0
jk

(t) =
1X

l=0

q
lk

P
jl

(t) = q
k�1,k

P
j,k�1

(t) + q
kk

P
jk

(t)

= �P
j,k�1

(t)� �P
jk

(t).

Since we already know P
jk

(t) for k  j, we will use the preceding di↵erential
equation inductively to calculate P

jk

(t) for k > j, one k at a time.
To do this, though, we need to review a little about linear first-order dif-

ferential equations. In particular, we will consider equations of the form

f 0 + �f = g

where f and g are functions of t and � is a constant. To solve such equa-
tions, we make the left side have the form of the derivative of a product by
multiplying through by e�t:

e�tf 0 + �e�tf = e�tg
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We recognize the left as the derivative of the product of e�t and f:

(e�tf)0 = e�tg

We can integrate both sides of this 9with s substituted for t) from 0 to t to
recover f(t): Z

t

0

d

ds
(e�sf(s)) ds =

Z
t

0

e�sg(s) ds

Of course, the integral of the derivative may be evaluated using the (second)
fundamental theorem of calculus:

e�tf(t)� f(0) =

Z
t

0

e�sg(s) ds

Now we can solve algebraically for f(t):

f(t) = e��tf(0) + e��t

Z
t

0

e�sg(s) ds

Using this formula for the solution of the di↵erential equation, we substitute
P

jk

(t) for f(t), and �P
j,k�1

(t) for g(t). We get that

P
jk

(t) = e��tP
jk

(0) + �

Z
t

0

e��(t�s)P
j,k�1

(s) ds

Since we are assuming that the process starts at j, i.e., X
0

= j, we know that
P

jk

(0) = 0 for all k 6= j and P
jj

(0) = 1. In other words

P
jk

(0) = �
jk

(this is the Kronecker delta).
Now we are ready to compute. Note that we have to compute P

jk

(t) for
all possible nonnegative integer values of j and k. In other words, we have to
fill in all the entries in the table:

P
00

(t) P
01

(t) P
02

(t) P
03

(t) P
04

(t) · · ·
P

10

(t) P
11

(t) P
12

(t) P
13

(t) P
14

(t) · · ·
P

20

(t) P
21

(t) P
22

(t) P
23

(t) P
24

(t) · · ·
P

30

(t) P
31

(t) P
32

(t) P
33

(t) P
34

(t) · · ·
...

...
...

...
. . . · · ·
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Of course, we already know part of the table:

e��t P
01

(t) P
02

(t) P
03

(t) P
04

(t) · · ·
0 e��t P

12

(t) P
13

(t) P
14

(t) · · ·
0 0 e��t P

23

(t) P
24

(t) · · ·
0 0 0 e��t P

34

(t) · · ·
...

...
...

...
. . . · · ·

So we begin the induction:
We know that P

jj

= e��t, so we can use the di↵erential equation

P 0
j,j+1

(t) + �P
j,j+1

(t) = �P
jj

(t)

to get that

P
j,j+1

(t) = �

Z
t

0

e��(t�s)e��sds = �te��t

Note that this fills in the next diagonal of the table.
Then we can use the di↵erential equation

P 0
j,j+2

(t) + �P
j,j+2

(t) = �P
j,j+1

(t)

to get that

P
j,j+2

(t) = �

Z
t

0

e��(t�s)�se��sds =
(�t)2

2
e��t

Continuing by induction we get that

P
jk

(t) =
(�t)k�j

(k � j)!
e��t

provided 0  j  k and t > 0. This means that the random variable X
t

(this is the infinite discrete random variable that gives the value of j at time
t, i.e., tells how many jumps have happened up until time t, has a Poisson
distribution with parameter �t This is the important connection between the
exponential distribution and the Poisson distribution.
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4.3 The Wiener process

4.3.1 Review of Taylor’s theorem

Taylor series are familiar to every student of calculus as a means writing
functions as power series. The real force of Taylor series is what is called
Taylor’s theorem which tells one how well the Taylor polynomials approxi-
mate the function. We will be satisfied with the following version of Taylor’s
theorem. First, we introduce some notation.

Definition 4.3.1. For two functions f and g, we say that f(h) is o(g(h))
(as h ! 0) (read ”f is little o of g) if

lim
h!0

f(h)/g(h) = 0

It of course means that f(h) is smaller than g(h) (as h gets small) but in
a very precise manner.

As an example, note that another way to say that f 0(a) = b is to say that

f(a + h)� (f(a) + bh) = o(h)

That is, that the di↵erence between the function h 7! f(a+h) and the linear
function h 7! f(a) + bh is small as h ! 0.

Taylor’s theorem is just the higher order version of this statement.

Theorem 4.3.1. Let f be a function defined on an interval (↵, �) be n times
continuously di↵erentiable. Then for any a 2 (↵, �)

f(a + h) = f(a) + f 0(a)h +
f 00(a)

2!
h2 +

f (3)(a)

3!
h3 + · · · + f (n)(a)

n!
hn + o(hn)

We will in fact need a multivariable version of this, but only of low order.

Theorem 4.3.2. Let f(x, y) be a function of two variables defined on an
open set of O ⇢ R2. Then for any point (a, b) 2 O one has

f(a + k, b + k) = f(a, b) +
@f

@x
(a, b)h +

@f

@y
(a, b)k

+
1

2
(
@2f

@x2

(a, b)h2 + 2
@2f

@x@y
(a, b)kh +

@2f

@y2

(a, b)k2) + o(h2, k2, hk)
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4.3.2 The Fokker-Plank equation

We will give a derivation of the Fokker-Planck equation, which governs the
evolution of the probability density function of a random variable-valued
function X

t

that satisfies a ”first-order stochastic di↵erential equation”. The
variable evolves according to what in the literature is called a Wiener process,
named after Norbert Wiener, who developed a great deal of the theory of
stochastic processes during the first half of this century.

We shall begin with a generalized version of random walk (an ”unbalanced”
version where the probability of moving in one direction is not necessarily
the same as that of moving in the other). Then we shall let both the space
and time increments shrink in such a way that we can make sense of the limit
as both �x and �y approach 0.

Recall from the previous sections the one-dimensional random walk (on
the integers) beginning at W

0

= 0. We fix a parameter p, and let p be the
probability of taking a step to the right, so that 1 � p is the probability of
taking a step to the left, at any (integer-valued) time n. In symbols, this is:

p = P (W
n+1

= x + 1|W
n

= x) and 1� p = P (W
n+1

= x� 1|W
n

= x).

Thus
W

n

= ⇠
1

+ · · · + ⇠
n

where ⇠
j

are IID with P (⇠
j

= 1) = p and P (⇠
j

= �1) = 1 � p. Since we
are given that W

0

= 0, we know that the probability function of W
n

will be
essentially binomially distributed (with parameters n and p, except that at
time n, x will go from �n to +n, skipping every other integer as discussed
earlier). We will set v

x,n

= P (W
n

= x). Then

v
x,n

=

✓
n

1

2

(n + x)

◆
p

1
2 (n+x)(1� p)

1
2 (n�x)

for x = �n,�(n� 2), . . . , (n� 2), n and v
x,n

= 0 otherwise.
For use later, we calculate the expected value and variance of W

n

. First,

E(W
n

) =
nX

x=�n

xv
x,n

=
nX

k=0

(2k � n)v
x,2k�n

=
nX

k=0

(2k � n)
⇣n

k

⌘
pk(1� p)n�k

= n(2p� 1)
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(it’s an exercise to check the algebra; but the result is intuitive). Also,

Var(W
n

) =
nX

k=0

(2k � n)2v
x,2k�n

=
nX

k=0

(2k � n2)
⇣n

k

⌘
pk(1� p)n�k

= 4np(1� p)

(another exercise!).
Now lets form a new stochastic process W� and we let the space steps �x

and time steps �t be di↵erent from 1. W� is a shorthand for W�t,�x.
First, the time steps. We will take time steps of length �t. This will have
little e↵ect on our formulas, except everywhere we will have to note that the
number n of time steps needed to get from time 0 to time t is

n =
t

�t

Each step to the left or right has length �x instead of length 1. This has
the e↵ect of scaling W by the factor �x. Since multiplying a random variable
by a constant has the e↵ect of multiplying its expected value by the same
constant, and its variance by the square of the constant.

Therefore, the mean and variance of the total displacement in time t are:

E(W�

t

) =
t

�t
(2p� 1)�x and Var(W�

t

) = 4p(1� p)t
(�x)2

�t

We want both of these quantities to remain finite for all fixed t, since we
don’t want our process to have a positive probability of zooming o↵ to infinity
in finite time, and we also want Var(W (t)) to be non-zero. Otherwise the
process will be completely deterministic.

We need to examine what we have control over in order to achieve these
ends. First o↵, we don’t expect to let�x and�t to go to zero in any arbitrary
manner. In fact, it seems clear that in order for the variance to be finite and
non-zero, we should insist that �t be roughly the same order of magnitude
as (�x)2. This is because we don’t seem to have control over anything else
in the expression for the variance. It is reasonable that p and q vary with
�x, but we probably don’t want their product to approach zero (that would
force our process to move always to the left or always to the right), and it
can’t approach infinity (since the maximum value of p(1� p) is 1/4). So we
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are forced to make the assumption that (�x)

2

�t

remain bounded as they both
go to zero. In fact, we will go one step further. We will insist that

(�x)2

�t
= 2D (4.3.1)

for some (necessarily positive) constant D.
Now, we are in a bind with the expected value. The expected value will

go to infinity as �x ! 0, and the only parameter we have to control it is
2p� 1. We need 2p� 1 to have the same order of magnitude as �x in order
to keep E(W�

t

) bounded. Since p = 1 � p when p = 1/2, we will make the
assumption that

p =
1

2
+

c

2D
�x (4.3.2)

for some real (positive, negative or zero) constant c, which entails

1� p =
1

2
� c

2D
�x

The reason for the choice of the parameters will become apparent. D is called
the di↵usion coe�cient, and c is called the drift coe�cient.

Note that as �x and �t approach zero, the values v
n,k

= P (W�

n�t

=
k�x) = p(k�x, n�t) specify values of the function p at more and more
points in the plane. In fact, the points at which p is defined become more
and more dense in the plane as �x and �t approach zero. This means that
given any point in the plane, we can find a sequence of points at which such an
p is defined, that approach our given point as �x and �t approach zero. We
would like to be able to assert the existence of the limiting function, and that
it expresses how the probability of a continuous random variable evolves with
time. We will not quite do this, but, assuming the existence of the limiting
function, we will derive a partial di↵erential equation that it must satisfy.
Then we shall use a probabilistic argument to obtain a candidate limiting
function. Finally, we will check that the candidate limiting function is a
solution of the partial di↵erential equation. This isn’t quite a proof of the
result we would like, but it touches on the important steps in the argument.

We begin with the derivation of the partial di↵erential equation. To do
this, we note that for the original random walk, it was true that v

x,n

satisfies
the following di↵erence equation:

v
k,n+1

= pv
k�1,n

+ (1� p)v
k+1,n



106 CHAPTER 4. CONTINUOUS TIME

This is just the matrix of the (infinite discrete) Markov process that defines
the random walk. When we pass into the �x, �t realm, and use p(x, t)
notation instead of v

k�x,n�t

, this equation becomes:

(⇤) p(x, t +�t) = pp(x��x, t) + (1� p)p(x +�x, t)

Next, we need Taylor’s expansion for a function of two variables. As we do
the expansion, we must keep in mind that we are going to let �t ! 0, and as
we do this, we must account for all terms of order up to and including that
of �t. Thus, we must account for both �x and (�x)2 terms (but (�x)3 and
�t�x both go to zero faster than �t).

We expand each of the three expressions in equation (*) around the point
(x, t), keeping terms up to order �t and (�x)2. We get:

p(x, t +�t) = p(x, t) +�(t)
@p

@t
(x, t) + · · ·

p(x +�x, t) = p(x, t) +�(x)
@p

@x
(x, t) +

(�x)2

2

@2p

@x2

(x, t) + · · ·

p(x��x, t) = p(x, t)��(x)
@p

@x
(x, t) +

(�x)2

2

@2p

@x2

(x, t) + · · ·

We substitute these three equations into (*), recalling that p + (1� p) = 1,
we get

�t
@p

@t
= �(2p� 1)�x

@p

@x
+

(�x)2

2

@2p

@x2

(where all the partial derivatives are evaluated at (x, t)). Finally, we divide
through by �t, and recall that (�x)2/�t = 2D, and 2p � 1 = �xc/D to
arrive at the equation:

@p

@t
= �2c

@p

@x
+ D

@2p

@x2

This last partial di↵erential equation is called the Fokker-Planck equation.
To find a solution of the Fokker-Planck equation, we use a probabilistic

argument to find the limit of the random walk distribution as �x and �t
approach 0. The key step in this argument uses the fact that the binomial
distribution with parameters n and p approaches the normal distribution
with expected value np and variance np(1 � p) as n approaches infinity. In
terms of our assumptions about �x, �t, p and 1� p, we see that at time t,
the binomial distribution has mean

t(2p� 1)
�x

�t
= 2ct
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and variance

4p(1� p)t
(�x)2

�t

which approaches 2Dt as �t ! 0. Therefore, we expect W
t

in the limit to be
normally distributed with mean 2ct and variance 2Dt. Thus, the probability
that W

t

< x is

P (W
t

< x) =
1p
2⇡

Z x�2ctp
2Dt

�1
e�

1
2y

2
dy

Therefore the pdf of W
t

is the derivative of this with respect to x, which
yields the pdf

p(x, t) =
1

2
p
⇡Dt

e�
(x�2ct)2

4Dt

A special case of this is when c = 0 and D = 1

2

. The corresponding process
is called the Wiener process (or Brownian motion). The following properties
characterize the Wiener process, which we record as a theorem.

Theorem 4.3.3. 1. W
0

= 0 with probability 1.

2. W
t

is a continuous function of t with probability 1.

3. For t > s W
t

�W
s

is normally distributed with mean 0 and variance
t� s.

4. For T � s � t � u � v, W
s

�W
t

and W
u

�W
v

are independent.

5. The probability density for W
t

is

p(x, t) =
1p
2⇡t

e�
x

2

2t

Proof: Let’s discuss these points.
1. This is clear since we defined W

t

as a limit of random walks which all
started at 0.
3. This we derived from the Fokker-Plank equation.
4. Again, we defined W

t

as a limit of random walks, W�. Now W�

t

=
�x(⇠

1

+ · · · ⇠
n

) where n = t/�t. So if t = n�t, s = m�t, u = k�t and
v = l�t where n � m � k � l then we have

W
t

�W
s

= �x(⇠
m+1

+ ⇠
m+2

+ · · · ⇠
n

)
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and
W

u

�W
v

= �x(⇠
l+1

+ · · · ⇠
k

)

which are independent.
2. This fact is beyond the scope of our discussion but is intuitive.
Q.E.D.
While, according to 2. above, the paths W

t

are continuous, they are very
rough and we see according to the next proposition that they are not di↵er-
entiable, with probability 1.

Proposition 4.3.4. For all t > 0 and all n = 1, 2, . . .,

lim
h!0

P (|W
t+h

�W
t

| > n|h|) = 1

so that W
t

is nowhere di↵erentiable.

Proof: Assume without loss of generality that h > 0. Then

P (|W
t+h

�W
t

| > nh) = P (|W
h

| > nh)

by 3) of ??. Now this gives

1� P (|W
h

|  nh)

Now

P (|W
h

|  nh)) =
1p
2⇡h

Z
nh

�nh

e�
x

2

2t dx

 1p
2⇡h

Z
nh

�nh

1dx  1p
2⇡h

2hn

=

r
2h

⇡

which converges to 0 as h ! 0 for any n. Q.E.D.
Almost everything we use about the Wiener process will follow from ??.

We now do some sample computations to show how to manipulate the Wiener
process and some of which will be useful later.
1. Calculate the expected distance of the Wiener process from 0.
Solution: This is just E(|W

t

|) which is
Z 1

�1
|x| 1p

2⇡t
e�

x

2

2t
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= 2

Z 1

0

x
1p
2⇡t

e�
x

2

2t

Changing variables, u = x2/(2t) this integral becomes

2tp
2⇡t

Z 1

0

e�udu =
p

2t/⇡

2. Calculate E(W
t

W
s

).
Solution: Assume without loss of generality that t > s. Then

E(W
t

W
s

) = E((W
t

�W
s

)W
s

+ W 2

s

) = E((W
t

�W
s

)W
s

) + E(W 2

s

)

Now W
t

�W
s

is independent of W
s

since t > s and W
s

has mean 0, therefore
we get

E(W
t

�W
s

)E(W
s

) + �2(W
s

) = s

since W
t

�W
s

has mean 0.

The Wiener Process Starting at y, W y

The defining properties of W y

t

= W
t

+ y, the Wiener process starting at y,
are:

1. W y

0

= y.

2. W y

t

is continuous with probability 1.

3. W y

t

is normally distributed with µ = y, �2 = t.

4. W y

t

�W y

s

is normally distributed with µ = 0, �2 = t� s, t > s.

5. W y

t

�W y

s

, W y

u

�W y

v

are independent for t � s � u � v.

6. The pdf is given by

p(x, t|y) =
1p
2⇡t

e�
(x�y)

2

2t

P (a  W y

t

 b) =
1p
2⇡t

Z
b

a

e�
(x�y)

2

2t dx
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How do we use Wiener Process to model stock movements?

We would like to make sense of the idea that
dS

t

dt
= µS

t

+noise(�, S
t

), where

if the noise term were absent then S
t

is a bank account earning interest u.
There are two obvious problems:
(1) THe Wiener process is di↵erentiable nowhere, so why should S

t

be
di↵erentiable anywhere?
(2) “Noise” is very di�cult to make rigorous.

To motivate our way out of these problems let us look at deterministic
motion. The most general 1st order di↵erential equation is

df

dt
= �(f(t), t) .

By integrating both sides we arrive at the following integral equation

f(t)� f(t
0

) =

Z
t

t0

df

dt
dt =

Z
t

t0

�(f(t), t) dt .

That is,

f(t) = f(t
0

) +

Z
t

t0

�(f(t), t) dt .

Theoretically integral equations are better behaved than di↵erential equa-
tions (they tend to smooth out bumps). So we try to make the corresponding
conversion from di↵erential to integral equation in the stochastic world.

Our first goal is just to define a reasonable notion of stochastic integral.
We had the Martingale Transform: If S

n

was a stock, �
n

denoted the
amount of stock at tick n, then the gain from tick 0 to tick N was

NX

i=1

�
i

(S
i

� S
i�1

)

It is these sorts of sums that become integrals in continuous time.
Recall the Riemann integral

R
b

a

f(x) dx: Take a partition of [a, b], P =
{a = t

0

< t
1

< · · · < t
n

= b}.
Theorem 4.3.5. (Riemann’s Theorem) Let f be a function such that the
probability of choosing a point of discontinuity is 0. Let mesh P = max{|t

i

� t
i�1

| |i =
1, . . . , n}, let t

i�1

< ⇠
i

< t
i

, then let

RS(f,P) =
nX

i=1

f(⇠
i

)(t
i

� t
i�1

) .
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(RS stands for Riemann sum). Then

lim
meshP!0

RS(f,P)

exists, and is independent of the choices of ⇠
i

within their respective intervals.
We call this limit the Riemann integral

Z
b

a

f(x)dx

Note that the summation is beginning to look like a martingale transform.
The next level of integral technology is the Riemann-Stieltjes integral.

Suppose �(x) is a non decreasing function, P a partition, and ⇠
i

values be-
tween partition points. Let

RSS(f,P ,�) =
nX

i=1

f(⇠
i

)(�(t
i

)� �(t
i�1

)) .

(“RSS” stands for Riemann-Stieltjes sum.) If limmeshP!0

RSS(f,P ,�) ex-

ists, then by definition,
R

b

a

f(t) d�(t) is this limit. Assuming � is di↵eren-
tiable, the corresponding Riemann’s theorem holds, namely

lim
meshP!0

RSS(f,P ,�)

exists (and is independent of the choices of ⇠
i

).

Proposition 4.3.6. If � is di↵erentiable,
R

b

a

f(t) d�(t) =
R

b

a

f(t)�0(t) dt.

Proof. Let P = {a = t
0

< t
1

< · · · < t
n

= b}.

RSS(f,P ,�) =
P

n

i=1

f(⇠
i

)(�(t
i

)� �(t
i�1

))

=
P

n

i=1

f(⇠
i

)�(t

i

)��(t

i�1)

t

i

�t

i�1
(t

i

� t
i�1

)

=
P

n

i=1

f(⇠
i

)(�0(t
i

) + o(|t
i

� t
i�1

|2))(t
i

� t
i�1

)

(4.3.3)

and so limmeshP!0

P
n

i=1

f(⇠
i

)�0(t
i

)(t
i

� t
i�1

) =
R

b

a

f(t)�0(t) dt.

Example. Let �(x) be di↵erentiable.

Z
b

a

�(t) d�(t) =

Z
b

a

�(t)�0(t) dt =
1

2
�(b)2 � 1

2
�(a)2 .
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A stochastic integral is formed much like the Riemann-Stieltjes integral,
with one twist.

For X
t

and �
t

stochastic processes,

Z
b

a

�
t

dX
t

is to be a random variable. In the Riemann and Riemann-Stieltjes cases, the
choices of the points ⇠

i

in the intervals were irrelevant, in the stochastic case it
is very much relevant. As an example, take P = {a = t

0

< t
1

< · · · < t
n

= b}.
Consider

nX

i=1

�
⇠

i

(X
t

i

�X
t

i�1) .

Let’s work out the above sum for X
t

= �
t

= W
t

, where W
t

is the Wiener
process, using two di↵erent choices for the ⇠

i

’s.
First, let ⇠

i

= t
i�1

, the left endpoint. Then

E
⇣P

n

i=1

W
t

i�1(Wt

i

�W
t

i�1)
⌘

=
P

n

i=1

E(W
t

i�1(Wt

i

�W
t

i�1))

=
P

n

i=1

E(W
t

i�1)E(W
t

i

�W
t

i�1) = 0 ,

using independence.
Second, let ⇠

i

= t
i

, the right endpoint. Then

E
⇣P

n

i=1

W
t

i

(W
t

i

�W
t

i�1)
⌘

=
P

n

i=1

E(W
t

i

(W
t

i

�W
t

i�1)) =
P

n

i=1

E(W
t

i

2 �W
t

i

W
t

i�1)

=
P

n

i=1

E(W
t

i

2)� E(W
t

i

W
t

i�1)
=

P
n

i=1

t
i

� t
i�1

= (t
1

� t
0

) + (t
2

� t
1

) + · · · + (t
n

� t
n�1

)
= t

n

� t
0

= b� a .

Which endpoint to choose? Following Itô, one uses the left-hand endpoint.
One defines the Itô sum

IS(�
t

,P , X
t

) =
nX

i=1

�
t

i�1(Xt

i

�X
t

i�1)

.
There are two motivations for this choice.
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1. The lefthand choice looks a little like a previsibility condition. For
example, if X

t

is a stock-process and �
t

a portfolio process then the
left-hand choice embodies the idea that our gains from time T

i�1

to
time t

i

should be based on a choice made at time t
i�1

.

2. It turns out, that if X
t

is a Martingale, then the Ito sum will be a
Martingale as well.

Following Stratonovich, one takes ⇠
i

= 1

2

(t
i�1

+ t
i

), the midpoint. As an
advantage, the resulting Stratonovich calculus looks like traditional calculus.
As a disadvantage, the derived stochastic process is not a martingale.

Let X
t

be a stochastic process. Let �
t

be another stochastic process defined
on the same sample space as X

t

.

Definition 4.3.2. �
t

is adapted to X
t

if �
t

is independent of X
s

�X
t

for
s > t.

Then we define the Itô integral

Z
t

a

�
s

dX
s

⌘ lim
meshP!0

IS(�,P , X) = lim
meshP!0

nX

i=1

�
t

i�1(Xt

i

�X
t

i�1) .

Let us call a random variable with finite first and second moments sqaure
integrable. One knows that for X, Y square integrable random variables
defined on the same sample space, P (X = Y ) = 1 i↵ E(X) = E(Y ) and
Var(X � Y ) = 0. Now Var(X � Y ) = E((X � Y )2)� (E(X � Y ))2, so

P (X = Y ) = 1 i↵ E((X � Y )2) = 0 .

This is a criterion for checking whether two square integrable random vari-
ables are equal (almost surely).

Definition 4.3.3. A sequence X↵ of square integrable random variables
converges in mean-square to X if E((X �X↵)2) ! 0 as ↵! 0. In symbols,
lim X↵ = X. This is equivalent to E(X↵) ! E(X) and Var(X �X↵) ! 0.

This is the sense of the limit in the definition of the stochastic integral.
Here is a sample computation of a stochastic integral. Let’s evaluate

Z
b

a

W
t

dW
t
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We need the following facts: E(W
t

) = 0, E(W
t

2) = t, E(W
t

3) = 0, and
E(W

t

4) = 3t2.

IS(W
t

,P , W
t

) =
P

n

i=1

W
t

i�1 ·�W
t

i

=
P

n

i=1

W
t

i�1(Wt

i

�W
t

i�1)
= 1

2

P
n

i=1

(W
t

i�1 +�W
t

i

)2 �W
t

i�1

2 � (�W
t

i

)2

= 1

2

P
n

i=1

W
t

i

2 �W
t

i�1

2 � 1

2

P
n

i=1

(�W
t

i

)2

= 1

2

((W
t1

2 �W
t0

2) + (W
t2

2 �W
t1

2) + · · ·
+(W

t

n

2 �W
t

n�1
2))� 1

2

P
n

i=1

(�W
t

i

)2

= 1

2

(W
b

2 �W
a

2)� 1

2

P
n

i=1

(�W
t

i

)2 .

The first part is recognizable as what the Riemann-Stieltjes integral gives
formally. But what is

P
n

i=1

(�W
t

i

)2 as meshP ! 0? The simple calculation

E
⇣ nX

i=1

(�W
t

i

)2

⌘
=

nX

i=1

E((�W
t

i

)2)

=
nX

i=1

E((W
t

i

�W
t

i�1)
2) =

nX

i=1

t
i

� t
i�1

= b� a

leads us to the
Claim:

lim
meshP!0

E(
nX

i=1

(�W
t

i

)2) = b� a

and therefore
Z

b

a

W
t

dW
t

=
1

2
(W

b

2 �W
a

2)� 1

2
(b� a) .

Proof.

E
⇣
(

nX

i=1

(�W
t

i

)2 � (b� a))2

⌘

= E
⇣
(
P

n

i=1

(�W
t

i

2))2 � 2(b� a)
P

n

i=1

(�W
t

i

)2 + (b� a)2

⌘

= E
⇣P

n

i=1

(�W
t

i

)4 + 2
P

i<j

(�W
t

i

)2(�W
t

j

)2 � 2(b� a)
P

n

i=1

(�W
t

i

)2 + (b� a)2

⌘

=
P

n

i=1

3(�t
i

)2 + 2
P

i<j

E((�W
t

i

)2)E((�W
t

j

)2)� E(2(b� a)
P

n

i=1

(�W
t

i

)2 + (b� a)2)
= 3

P
n

i=1

(�t
i

)2 + 2
P

i<j

(�t
i

)(�t
j

)� 2(b� a)
P

n

i=1

�t
i

+ (b� a)2

= 2
P

n

i=1

(�t
i

)2 +
hP

n

i=1

(�t
i

)2 + 2
P

i<j

(�t
i

)(�t
j

)
i
� 2(b� a)

P
n

i=1

�t
i

+ (b� a)2

= 2
P

n

i=1

(�t
i

)2 +
⇣P

n

i=1

(�t
i

)
⌘

2

� 2(b� a)
P

n

i=1

�t
i

+ (b� a)2

= 2
P

n

i=1

(�t
i

)2 +
⇣P

n

i=1

�t
i

� (b� a)
⌘

2

= 2
P

n

i=1

(�t
i

)2
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Now for each i, �t
i

 meshP , so (�t
i

)2  �t
i

· meshP . (Note that only
one �t

i

is being rounded up.) Summing i = 1 to n, 0 
P

n

i=1

(�t
i

)2 �P
n

i=1

�t
i

�
· meshP = (b� a) · meshP ! 0 as meshP ! 0. So

lim
meshP!0

nX

i=1

(�t
i

)2 = 0 .

Intuitively, �t
i

⇡ meshP ⇡ 1

n

, so limmeshP!0

P
n

i=1

(�t
i

)2 ⇡ lim
n!1 n ·

( 1

n

)2 ! 0.
The underlying reason for the di↵erence of the stochastic integral and the

Stieltjes integral is that �W
t

i

is, with high probability, of order
p
�t

i

.

Slogan of the Itô Calculus: dW
t

2 = dt.

In deriving the Wiener Process,
(�X)2

�t
= 1, so (�X)2 = (�W )2 = �t.

dW 2

t

= dt is only given precise sense through its integral form:

Theorem 4.3.7. . If �
s

is adapted to W
s

, then
R

t

a

�
s

(dW
s

)2 =
R

t

a

�
s

ds.

Moreover, for n > 2,
R

t

a

�
s

(dW
s

)n = 0.

Proving this will be in the exercises.
Properties of the Itô Integral. If �

s

,  
s

are adapted to the given process
(X

s

or W
s

), then

(1)

Z
t

a

dX
s

= X
t

�X
a

,

(2)

Z
t

a

(�
s

+  
s

) dX
s

=

Z
t

a

�
s

dX
s

+

Z
t

a

 
s

dX
s

,

(3) E
⇣Z

t

a

�
s

dW
s

⌘
= 0 and

(4) E
⇣
(

Z
t

a

�
s

dW
s

)2

⌘
= E

⇣Z
t

a

�
s

2 ds
⌘

.

Proof.
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1. For any partition P = {a = s
0

< s
1

< · · · < s
n

= t}, IS(1,P , X
s

) =P
n

i=1

1 · (X
s

i

� X
s

i�1), which telescopes to X
s

n

� X
s0 = X

t

� X
a

. So
the limit as meshP ! 0 is X

t

�X
a

.

2. It is obvious for any partition P that IS(�
s

+ 
s

,P , X
s

) = IS(�
s

,P , X
s

)+
IS( 

s

,P , X
s

). Now take the limit as meshP ! 0.

3. Given a partition P , IS(�
s

,P , W
s

) =
P

n

i=1

�
s

i�1(Ws

i

�W
s

i�1). Taking
expected values gives

E(IS(�
s

,P , W
s

)) = E
⇣P

n

i=1

�
s

i�1(Ws

i

�W
s

i�1)
⌘

=
P

n

i=1

E(�
s

i�1(Ws

i

�W
s

i�1))

=
P

n

i=1

E(�
s

i�1)E(W
s

i

�W
s

i�1) = 0 .

Taking the limit as meshP ! 0 gives the result.

4. Given a partition P ,
E(IS(�

s

,P , W
s

)2)

= E
⇣
(
P

n

i=1

�
s

i�1(Ws

i

�W
s

i�1))
2

⌘

= E
⇣P

n

i=1

�
s

i�1

2(W
s

i

�W
s

i�1)
2 + 2

P
i<j

�
s

i�1�s

j�1(Ws

i

�W
s

i�1)(Ws

j

�W
s

j�1)
⌘

= E
⇣P

n

i=1

�
s

i�1

2(�W
s

i

)2

⌘
+ 2

P
i<j

E(�
s

i�1�s

j�1(Ws

i

�W
s

i�1)(Ws

j

�W
s

j�1))

= E
⇣P

n

i=1

�
s

i�1

2(�W
s

i

)2

⌘
+ 2

P
i<j

E(�
s

i�1�s

j�1(Ws

i

�W
s

i�1)) · E(W
s

j

�W
s

j�1)

=
P

n

i=1

E(�
s

i�1

2)�s
i

+ 2
P

i<j

E(�
s

i�1�s

j�1(Ws

i

�W
s

i�1)) · 0
=

P
n

i=1

E(�
s

i�1

2)�s
i

= IS(�
s

2,P , s) .

Now take the limit as meshP ! 0.

4.3.3 Stochastic Di↵erential Equations.

A first-order stochastic di↵erential equation is an expression of the form

dX
t

= a(X
t

, t) dt + b(X
t

, t) dW
t

,

where a(x, t), b(x, t) are functions of two variables.
A stochastic process X

t

is a solution to this SDE if

X
t

�X
a

=

Z
t

a

dX
s

=

Z
t

a

a(X
s

, s) ds + b(X
s

, s) dW
s

.
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Lemma 4.3.8. (Itô’s Lemma). Suppose we are given a twice di↵erentiable
function f(x), and a solution X

t

to the SDE dX
t

= a dt+b dW
t

. Then f(X
t

)
is a stochastic process, and it satisfies the SDE

df(X
t

) = [f 0(X
t

)a +
1

2
f 00(X

t

)b2] dt + f 0(X
t

)b dW
t

.

More generally, if f(x, t) a function of two variables, twice di↵erentiable in
x, once di↵erentiable in t, one has df(X

t

, t)

= [
@f

@t
(X

t

, t) +
@f

dx
(X

t

, t)a +
1

2

@2f

@x2

(X
t

, t)b2] dt +
@f

@x
(X

t

, t)b dW
t

.

Proof. This is just a calculation using two terms of the Taylor’s series for
f , and the rules dW

t

2 = dt and dW
t

n = 0 for n > 2. (Note that dt dW
t

=
dW

t

3 = 0 and dt2 = dW
t

4 = 0.)

df(X
t

) = f(X
t+dt

)� f(X
t

) = [f(X
t

+ dX
t

)]� f(X
t

)
= [f(X

t

) + f 0(X
t

) dX
t

+ 1

2

f 00(X
t

)(dX
t

)2 + o((dX
t

)3)]� f(X
t

)
= f 0(X

t

) dX
t

+ 1

2

f 00(X
t

)(dX
t

)2

= f 0(X
t

)[a(X
t

, t) dt + b(X
t

, t) dW
t

] + 1

2

f 00(X
t

)[a2 dt2 + 2ab dt dW
t

+ b2 dW
t

2]
= [f 0(X

t

)a(X
t

, t) + 1

2

f 00(X
t

)(b(X
t

, t))2] dt + f 0(X
t

)b(X
t

, t) dW
t

Example. To calculate
R

t

a

W
t

dW
t

, show that is equal to
R

t

a

dX
t

= X
t

�X
a

for some X
t

. That is, find f(x) such that W
t

dW
t

= d(f(W
t

)). Since
R

x dx =
1

2

x2, consider f(x) = 1

2

x2. Then f 0(x) = x and f 00(x) = 1, so Itô’s lemma,
applied to dW

t

= 0 · dt + 1 · dW
t

, gives

d(f(W
t

)) = f 0(W
t

) dW
t

+
1

2
f 00(W

t

) dt = W
t

dW
t

+
1

2
· 1 dt = W

t

dW
t

+
1

2
dt .

Equivalently, W
t

dW
t

= df(W
t

)� 1

2

dt. Therefore,
R

t

a

W
s

dW
s

=
R

t

a

d(f(W
s

))�R
t

a

1

2

dt = f(W
t

)� f(W
a

)� 1

2

(t� a) = 1

2

W
t

2 � 1

2

W
a

2 � 1

2

(t� a).

Example. Calculate
R

t

a

W
s

2 dW
s

. Since
R

x2 dx = 1

3

x3, consider f(x) = 1

3

x3.
Then f 0(x) = x2 and f 00(x) = 2x. Itô’s lemma implies

d(
1

3
x3) = W

s

2 dW
s

+
1

2
· 2W

s

ds = W
s

2 dW
s

+ W
s

ds ,

or W
s

2 dW
s

= d(1

3

W
s

3)�W
s

ds, so

Z
t

a

W
s

2 dW
s

=
1

3
W

t

2 � 1

3
W

a

2 �
Z

t

a

W
s

ds .
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(The last integrand does not really simplify.)
Example. Solve dX

s

= 1

2

X
s

ds + X
s

dW
s

. Consider f 0(X
s

) · X
s

= 1. With
ordinary variables, this is f 0(x)·x = 1, or f 0(x) = 1

x

. So we are led to consider
f(x) = ln x, with f 0(x) = 1

x

, and f 00(x) = � 1

x

2 .
Then, using dX

s

= 1

2

X
s

ds + X
s

dW
s

and dX
s

2 = X
s

2 ds,

d(ln X
s

) = 1

X

s

dX
s

+ 1

2

(� 1

X

s

2 )(dX
s

)2

= 1

2

ds + dW
s

� 1

2

ds = dW
s

.

Now integrate both sides, getting
R

t

a

d(ln X
s

) =
R

t

a

dW
s

= W
t

�W
a

or

ln
⇣

X

t

X

a

⌘
= W

t

�W
a

and so

X
t

= X
a

eW

t

�W

a .

Asset Models

The basic model for a stock is the SDE

dS
t

= µS
t

dt + �S
t

dW
t

,

where µ is the short-term expected return, and � is the standard deviation
of the the short-term returns, called volatility.

Note that if � = 0, the model simplifies to dS
t

= µS
t

dt, implying S
t

=
S

a

eµt, which is just the value of an interest-bearing, risk-free security.
Compared with the generic SDE

dX
t

= a(X
t

, t) dt + b(X
t

, t) dW
t

the stock model uses a(x, t) = µx and b(x, t) = �x. We have dS
t

2 = �2S
t

2 dt.
The model SDE is similar to the last example, and the same change of vari-
ables will work. Using f(x) = ln x, f 0(x) = 1

x

, and f 00(x) = � 1

x

2 , Itô’s lemma
gives

d(ln S
t

) = 1

S

t

dS
t

+ 1

2

(� 1

S

t

2 )(dS
t

)2

= µ dt + � dW
t

� 1

2

�2 dt
= (µ� 1

2

�2) dt + � dW
t

.

Integrating both sides gives
R

t

0

d(ln S
s

) =
R

t

0

(µ� 1

2

�2) ds + � dW
s

ln S
t

� ln S
0

= (µ� 1

2

�2)t + �W
t

S

t

S0
= e(µ�

1

2

�2)t + �W
t

S
t

= S
0

e(µ�
1

2

�2)t + �W
t .
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The expected return of S
t

is

E(ln(S
t

/S
0

)) = E((µ� 1

2
�2)t + �W

t

) = (µ� 1

2
�2)t .

Vasicek’s interest rate model is dr
t

= a(b�r
t

) dt+� dW
t

. It satisfies “mean
reversion”, meaning that if r

t

< b, then dr
t

> 0, pulling r
t

upwards, while if
r
t

> b, then dr
t

< 0, pushing r
t

downwards.
The Cox-Ingersoll-Ross model is dr

t

= a(b�r
t

) dt+�
p

r
t

dW
t

. It has mean
reversion, and a volatility that grows with r

t

.
Ornstein-Uhlenbeck Process. An O-U process is a solution to

dX
t

= µX
t

dt + � dW
t

with an initial condition X
0

= x
0

.
This SDE is solved by using the integrating factor e�µt. First,

e�µt dX
t

= µe�µtX
t

dt + �e�µt dW
t

holds just by multiplying the given SDE. Letting f(x, t) = xe�µt, then

@f

@t
= �µe�µtX

t

dt ,
@f

@x
= e�µt , and

@2f

@x2

= 0 .

Itô’s lemma gives

df(X
t

, t) = @f

@t

(X
t

, t) dt + @f

@x

(X
t

, t) dX
t

+ @

2
f

@x

2 (Xt

, t) dX
t

2

d(e�µtX
t

) = �µe�µtX
t

dt + e�µt dX
t

or
e�µt dX

t

= d(e�µtX
t

) + µe�µtX
t

dt .

So the SDE, with integrating factor, rewrites as

d(e�µtX
t

) + µe�µtX
t

dt = µe�µtX
t

dt + �e�µt dW
t

d(e�µtX
t

) = �e�µt dW
t

.

Now integrate both sides from 0 to t:

R
t

0

d(e�µsX
s

) =
R

t

0

�e�µs dW
s

e�µtX
t

�X
0

=
R

t

0

�e�µs dW
s

X
t

= eµtX
0

+ eµt

R
t

0

�e�µs dW
s

.
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Let’s go back to the stock model

dS
t

= µS
t

dt + �S
t

dW
t

with solution

S
t

= S
0

e(µ�
1

2

�2)t + �W
t .

We calculate the pdf of S
t

as follows. First,

P (S
t

 S) = P (S
0

e(µ�
1

2

�2)t + �W
t  S)

= P (e(µ�
1

2

�2)t + �W
t  S/S

0

)
= P ((µ� 1

2

�2)t + �W
t

 ln(S/S
0

))

= 1p
2⇡�

2
t

R
ln(S/S0)

�1 e�
(x�(µ� 1

2�

2
)t)

2

2�

2
t dx .

Second, the pdf is the derivative of the above with respect to S. The funda-
mental theorem of calculus gives us derivatives of the form d

du

R
u

a

�(x) dx =
�(u). The chain rule gives us, where u = g(S), a derivative

d

dS

Z
g(S)

a

�(x) dx = (
d

du

Z
u

a

�(x) dx) · du

dS
= �(u) · g0(S) = �(g(S)) · g0(S) .

In the case at hand, g(S) = ln(S/S
0

) = ln S � ln S
0

, so g0(S) = 1/S, and the
pdf is

d

dS

P (S
t

 S) = d

dS

1p
2⇡�

2
t

R
ln(S/S0)

�1 e�
(x�(µ� 1

2�

2
)t)

2

2�

2
t dx

= 1

S

p
2⇡�

2
t

e�
(ln(S/S0)�(µ� 1

2�

2
)t)

2

2�

2
t

for S > 0 and identically 0 for S  0.
Pricing Derivatives in Continuous Time

Our situation concerns a stock with price stochastic variable S
t

, and a
derivative security, assumed to have expiration T , and further assumed that
its (gross) payo↵ depends only on T and S

T

. Let V (S
T

, T ) denote this payo↵.
More generally, let V (S

t

, t) denote the payo↵ for this derivative if it expires
at time t with stock price S

t

. In particular, V (S
t

, t) depends only on t and
S

t

. That is, we have a deterministic function V (s, t), and are plugging in a
stochastic process S

t

and getting a stochastic process V (S
t

, t).
To price V , construct a self-financing, hedging portfolio for V . That is, set

up a portfolio consisting of �
t

units of stock S
t

and  
t

units of bond B
t

⇧
t

= �
t

S
t

+  
t

B
t

,
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such that the terminal value of the portfolio equals the derivative payo↵

⇧
T

= V
T

,

subject to the self-financing condition

SFC1 ⇧
t

= ⇧
0

+

Z
t

0

�
s

dS
s

+  
s

dB
s

.

The pricing of the portfolio is straightforward, and the no-arbitrage as-
sumption implies ⇧

t

= V
t

for all t  T .
Recall, also, the self-financing condition in the discrete case:

(�⇧)
n

= �
n

�S
n

+  
n

�B
n

.

The continuous limit is

SFC2 d⇧
t

= �
t

dS
t

+  
t

dB
t

.

We now model the stock and bond. The stock is dS
t

= µS
t

dt + �S
t

dW
t

,
while the bond is dB

t

= rB
t

dt.

Theorem 4.3.9. (Black-Scholes). Given a derivative as above, there exists
a self-financing, hedging portfolio ⇧

t

= �
t

S
t

+ 
t

B
t

with ⇧
t

= V (S
t

, t) if and
only if

(BSE)
@V

@t
+

1

2
�2S2

@2V

@S2

+ rS
@V

@S
� rV = 0,

and furthermore, �
t

= @V

@S

.

Proof. Let’s calculate dV (S
t

, t) = d⇧
t

two ways. First, by Ito’s lemma

dV (S
t

, t) =
@V

@t
(S

t

, t) dt +
@V

@S
(S

t

, t) dS
t

+
1

2

@2V

@S2

(S
t

, t)(dS
t

)2 ,

or, suppressing the S
t

, t arguments,

dV
t

= @V

@t

dt + @V

@S

dS
t

+ 1

2

@

2
V

@S

2 (dS
t

)2

= (@V

@t

+ µS
t

@V

@S

+ 1

2

�2S
t

2

@

2
V

@S

2 ) dt + @V

@S

�S
t

dW
t

.

On the other hand, using our stock and bond model on a portfolio, the self
financing condition (SFC2) says that V

t

= ⇧
t

= �
t

S
t

+  
t

B
t

,

dV
t

= d⇧
t

= �
t

dS
t

+  
t

dB
t

= (�
t

µS
t

+  
t

rB
t

) dt + �
t

�S
t

dW
t

.
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If these are to be equal, the coe�cients of dt and of dW
t

must be equal.
Equating the coe�cients of dW

t

gives

�
t

�S
t

=
@V

@S
�S

t

, hence �
t

=
@V

@S
,

and equating the coe�cients of dt gives

�
t

µS
t

+  
t

rB
t

=
@V

@t
+ µS

t

@V

@S
+

1

2
�2S

t

2

@2V

@S2

,

hence

 
t

rB
t

=
@V

@t
+

1

2
�2S

t

2

@2V

@S2

.

Since  
t

B
t

= ⇧
t

� �
t

S
t

= V
t

� @V

@S

S
t

we have

r(V
t

� @V

@S
S

t

) =
@V

@t
+

1

2
�2S

t

2

@2V

@S2

,

or in other works (BSE), completing the proof.
In summary, to construct a self-financing, replicating portfolio for a deriva-

tive, you need the value of the derivative V
t

= V (S
t

, t) to satisfy the Black-
Scholes equation and for the stock holding to be �

t

= @V

@S

.
The theory of partial di↵erential equations tells us that in order to get

unique solutions, we need boundary and temporal conditions. Since the BSE
is first order in t, we need one time condition. And since the BSE is second
order in S, we need two boundary conditions.

The time condition is simply the expiration payo↵ V (S
T

, T ) = h(S
T

).
(Usually, one has an “initial” condition, corresponding to time 0. Here, one
has a “final” or “terminal” condition.) The boundary conditions are usually
based on S = 0 and S !1.

For example, consider a call. h(S) = max(S � K, 0) is, by definition,
the payo↵ of a call at expiry, so V (S

T

, T ) = max(S
T

� K, 0) is the final
condition. If the stock price is zero, a call is worthless, hence V (0, t) = 0 is
one boundary condition. If the stock price grows arbitrarily large, the call is
essentially worth the same as the stock, that is V (S, t) ⇠ S.
The One-Dimensional Heat Equation

Let the temperature of a homogeneous one-dimensional object at position
x, time t be given by u(x, t). The heat equation is

@u

@t
= k

@2u

@x2

.
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where k is a constant, the thermal conductivity of the object’s material.
k = 1

2

gives the Fokker-Planck equation for a Wiener path, with solution

u(x, t) =
1p
2⇡t

e�
x

2

2t .

If we let k = 1, the solution is

u(x, t) =
1p
4⇡t

e�
x

2

4t .

What is lim
t!0

u(x, t), the initial temperature distribution? To answer this,
we use the following notion.
Definition. A Dirac �-function is a one-parameter family �

t

, indexed by
t � 0, of piecewise smooth functions such that

(1) �
t

(x) � 0 for all t, x,
(2)

R1
�1 �t(x) dx = 1 for all t,

(3) lim
t!0

�
t

(x) = 0 for all x 6= 0.

Example. Consider

�
t

= { 0 , if x < �t or x > t ,
1

2t

, if � t  x  t .

Important Example. The solutions to the heat equation

�
t

(x) = u(x, t) =
1p
4⇡t

e�
x

2

4t

are a Dirac �-function.
Proposition. If f is any bounded smooth function, �

t

any Dirac �-function,
then

lim
t!0

Z 1

�1
�
t

(x)f(x) dx = f(0) ,

more generally,

lim
t!0

Z 1

�1
�
t

(x� y)f(x) dx = f(y) .

Intuitively, this can be seen as follows. Every Dirac �-function is something
like the first example, and on a small interval, continuous functions are ap-
proximately constant, so lim

t!0

R1
�1 �t(x�y)f(x) dx ⇡ lim

t!0

R
t�y

�t�y

1

2t

f(x) dx ⇡
lim

t!0

2t · 1

2t

· f(y) ⇡ f(y).
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Proceeding, the Heat Equation

@u

@t
=
@2u

@x2

,

with initial condition u(x, 0) = �(x) and boundary conditions u(1, t) =
u(�1, t) = 0, will be solved using

�
t

=
1p
4⇡t

e�
x

2

4t ,

which is both a Dirac �-function and a solution to the Heat Equation for
t > 0.

Let

v(y, t) =
1p
4⇡t

Z 1

�1
e�

(x�y)

2

4t · �(x) dx for t > 0 .

Claim. lim
t!0

v(x, t) = �(x). This is just an example of the previous proposi-
tion:

lim
t!0

1p
4⇡t

Z 1

�1
e�

(x�y)

2

4t · �(x) dx = lim
t!0

Z 1

�1
�
t

(x� y)�(x) dx = �(y) .

Claim. v satisfies the Heat Equation.

@v

@t

= @

@t

R1
�1 e�

(x�y)

2

4t · �(x) dx

=
R1
�1

@

@t

(e�
(x�y)

2

4t ) · �(x) dx

=
R1
�1

@

2

@y

2 (e
� (x�y)

2

4t ) · �(x) dx

= @

2

@y

2

R1
�1 e�

(x�y)

2

4t · �(x) dx = @

2
v

@y

2 .

Back to the Black-Scholes equation

@V

@t
+

1

2
�2S2

@2V

@S2

+ rS
@V

@S
� rV = 0 .

Note that µ, the expected return of S, does not appear explicitly in the
equation. This is called risk neutrality. The particulars of the derivative
are encoded in the boundary conditions. For a call C(S, t) one has

@C

@t
+

1

2
�2S2

@2C

@S2

+ rS
@C

@S
� rV = 0 ,
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C(S, T ) = max(S �K, 0) ,

C(0, t) = 0 for all t, C(S, t) ⇠ S as S !1 .

And for a put P (S, t) one has

@P

@t
+

1

2
�2S2

@2P

@S2

+ rS
@P

@S
� rV = 0 ,

P (S, T ) = max(K � S, 0) ,

P (0, t) = K for all t, P (S, t) ! 0 as S !1 .

Black-Scholes Formula

The solution to the the call PDE above is

C(S, t) = SN(d
+

)�Ke�r(T�t)N(d�) ,

where
d

+

=
ln(

S

K

)+(r+

1
2�

2
)(T�t)

�

p
T�t

,

d� =
ln(

S

K

)+(r� 1
2�

2
)(T�t)

�

p
T�t

,

and

N(x) =
1p
2⇡

Z
x

�1
e�

s

2

2 ds =
1p
2⇡

Z 1

�x

e�
s

2

2 ds

is the cumulative normal distribution.
If you are given data, including the market price for derivatives, and nu-

merically solve the Black-Scholes formula for �, the resulting value is called
the implied volatility.

We derive the Black-Scholes formula from the Black-Scholes equation, by
using a change of variables to obtain the heat equation, whose solutions we
have identified, at least in a formal way.

The first di↵erence is the heat equation has an initial condition at t = 0,
while the Black-Scholes equation has a final condition at t = T . This can be
compensated for by letting ⌧ = T � t. Then in terms of ⌧ , the final condition
at t = T is an initial condition at ⌧ = 0.

The second di↵erence is that the Black-Scholes equation has S2

@

2
V

@S

2 while

the heat equation has
@2u

@x2

. If we let S = ex, or equivalently, x = ln S, then

@

@x

= @S

@x

@

@S

= ex

@

@S

= S @

@S

@

2

@x

2 = S2

@

2

@S

2 + · · ·
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The third di↵erence is that the Black-Scholes equation has @V

@S

and V terms,
but the heat equation has no @u

@x

or u terms. An integrating factor can
eliminate such terms, as follows. Suppose we are given

@u

@t
=
@2u

@x2

+ a
@u

@x
+ bu .

Let
u(x, t) = e↵x+�tv(x, t) ,

with ↵, � to be chosen later. Then

@u

@t
= �e↵x+�tv + e↵x+�t

@v

@t
,

@u

@x
= ↵e↵x+�tv + e↵x+�t

@v

@x
,

@2u

@x2

= ↵2e↵x+�tv + 2↵e↵x+�t

@v

@x
+ e↵x+�t

@2v

@x2

.

So
@u

@t
=
@2u

@x2

+ a
@u

@x
+ bu

becomes

e↵x+�t(�v+
@v

@t
) = e↵x+�t(↵2v+2↵

@v

@x
+
@2v

@x2

)+a·e↵x+�t(↵v+
@v

@x
)+b·e↵x+�tv ,

or

�v +
@v

@t
= ↵2v + 2↵

@v

@x
+
@2v

@x2

+ a · (↵v +
@v

@x
) + b · v ,

hence,
@v

@t
=
@2v

@x2

+ (a + 2↵)
@v

@x
+ (↵2 + a↵+ b� �)v .

With a and b given, one can set a + 2↵ = 0 and ↵2 + a↵ + b � � = 0 and
solve for ↵ and �. One gets ↵ = �1

2

a and � = b � ↵2 = b � 1

4

a2. In other
words, if v(x, t) is a solution to

@v

@t
=
@2v

@x2

,
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then u(x, t) = e�
1

2

ax + (b� 1

4

a2)tv(x, t) satisfies

@u

@t
=
@2u

@x2

+ a
@u

@x
+ bu .

With these three di↵erences accounted for, we will now solve the Black-
Scholes equation for a European call. We are considering

@C

@t
+

1

2
�2S2

@2C

@S2

+ rS
@C

@S
� rV = 0

with final condition
C(S, T ) = max(S �K, 0) .

First make the change of variables S = Kex, or equivalently, x = ln(S/K) =
ln S � ln K, and also let ⌧ = 1

2

�2(T � t), so C(S, t) = Ku(x, ⌧). Then

1.
@C

@t
=
@C

@⌧
· d⌧

dt
= (K

@u

@⌧
) · (�1

2
�2) = �1

2
�2K

@u

@⌧
,

2.
@C

@S
=
@C

@x
· dx

dS
= (K

@u

@x
) · 1

S
=

K

S

@u

@x
,

3.
@2C

@S2

=
@

@S
(
K

S

@u

@x
) = �K

S2

@u

@x
+

K

S

@

@S
(
@u

@x
)

= �K

S2

@u

@x
+

K

S

@

@x
(
@u

@x
)
@x

@S
= �K

S2

@u

@x
+

K

S2

@2u

@x2

.

Substituting this into the Black-Scholes equation, we have

�1

2
�2K

@u

@⌧
+

1

2
�2S2(�K

S2

@u

@x
+

K

S2

@2u

@x2

) + rS(
K

S

@u

@x
)� rKu = 0

or
1

2
�2

@u

@⌧
=

1

2
�2

@2u

@x2

� 1

2
�2

@u

@x
+ r

@u

@x
� ru

or
@u

@⌧
=
@2u

@x2

+ (
2r

�2

� 1)
@u

@x
� 2r

�2

u .



128 CHAPTER 4. CONTINUOUS TIME

Set k = 2r

�

2 . The equation becomes

@u

@⌧
=
@2u

@x2

+ (k � 1)
@u

@x
� ku .

And the final condition C(S, T ) = max(S �K, 0) becomes the initial condi-
tion Ku(x, 0) = max(Kex �K, 0), which becomes u(x, 0) = max(ex � 1, 0).

As we saw, this reduces to the heat equation if we let u(x, ⌧) = e↵x+�⌧v(x, ⌧),
with ↵ = �1

2

(k � 1) and � = �k � 1

4

(k � 1)2 = �1

4

(k + 1)2. And the initial
condition u(x, 0) = max(ex � 1, 0) becomes

e�
1
2 (k�1)xv(x, 0) = max(ex � 1, 0)

or equivalently,

v(x, 0) = max(ex · e 1
2 (k�1)x � e

1
2 (k�1)x, 0) = max(e

1
2 (k+1)x � e

1
2 (k�1)x, 0) .

Recall that the heat equation

@v

@⌧
=
@2v

@x2

v(x, 0) = �(x)

is solved by

v(x, ⌧) =
1p
4⇡⌧

Z 1

�1
e�

(y�x)

2

4⌧ �(y) dy ,

which in this case has �(y) = max(e
1
2 (k+1)y � e

1
2 (k�1)y, 0).

Now, e
1
2 (k+1)y > e

1
2 (k�1)y if and only if e

1
2 (k+1)y/e

1
2 (k�1)y > 1 if and only if

ey > 1 if and only if y > 0. So in our situation, we can write

�(y) =

(
e

1
2 (k+1)y � e

1
2 (k�1)y if y > 0

0 if y  0

Now make the change of variables s = (y � x)/
p

2⌧ . Then ds = dy/
p

2⌧ ,
so dy =

p
2⌧ ds. Then since �(

p
2⌧s + x) = 0 when

p
2⌧s + x < 0, that is,

when s < �xp
2⌧

,

v(x, ⌧) =
p

2⌧p
4⇡⌧

R1
�1 e�

(x�(

p
2⌧s+x))

2

4⌧ �(
p

2⌧s + x) ds

= 1p
2⇡

R1
�1 e�

2⌧s

2

4⌧ �(
p

2⌧s + x) ds

= 1p
2⇡

R1
�1 e�

s

2

2 �(
p

2⌧s + x) ds

= 1p
2⇡

R1
� xp

2⌧

e�
s

2

2 (e
1
2 (k+1)(

p
2⌧s+x) � e

1
2 (k�1)(

p
2⌧s+x)) ds

= I
+

� I�,
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where

I± =
1p
2⇡

Z 1

� xp
2⌧

e�
1
2 s

2
+

1
2 (k±1)(

p
2⌧s+x)ds .

We calculate I
+

by completing the square inside the exponent.

I
+

= 1p
2⇡

R1
� xp

2⌧

e�
1
2 s

2
+

1
2 (k+1)(

p
2⌧s+x)ds

= 1p
2⇡

· e 1
2 (k+1)x

R1
� xp

2⌧

e�
1
2 s

2
+

1
2 (k+1)

p
2⌧sds

= e

1
2 (k+1)x
p

2⇡

R1
� xp

2⌧

e�
1
2 (s� 1

2 (k+1)

p
2⌧)

2
+

1
4 (k+1)

2
⌧ds

= e

1
2 (k+1)x+1

4 (k+1)2⌧

p
2⇡

R1
� xp

2⌧

e�
1
2 (s� 1

2 (k+1)

p
2⌧)

2
ds

= e

1
2 (k+1)x+1

4 (k+1)2⌧

p
2⇡

R1
� xp

2⌧

� 1
2 (k+1)

p
2⌧

e�
1
2 t

2
dt

= e

1
2 (k+1)x+1

4 (k+1)2⌧

p
2⇡

R xp
2⌧

+

1
2 (k+1)

p
2⌧

�1 e�
1
2 t

2
dt

= e
1
2 (k+1)x+

1
4 (k+1)

2
⌧ · N(d

+

) = ex�↵x��⌧N(d
+

) .

using ↵ = �1

2

(k�1) and � = �1

4

(k+1)2 and where d
+

= xp
2⌧

+ 1

2

(k + 1)
p

2⌧ .
The second to last line was arrived at since

Z 1

a

e�t

2
/2dt =

Z �a

�1
e�t

2
/2dt

Now S = Kex and 2⌧ = �2(T � t), so

d
+

= xp
2⌧

+ 1

2

(k + 1)
p

2⌧

= ln(S/K)

�

p
T�t

+ 1

2

( 2r

�

2 + 1)�
p

T � t

=
ln(

S

K

)+(r+

1
2�

2
)(T�t)

�

p
T�t

.

The integral I� is treated in the same manner and gives

I� = e
1
2 (k�1)+

1
4 (k�1)

2
⌧N(d�)

= e�↵x��⌧�k⌧N(d�)

where d� = xp
2⌧

+ 1

2

(k � 1)
p

2⌧ =
ln(

S

K

)+(r� 1
2�

2
)(T�t)

�

p
T�t

. So with v(x, ⌧) =

I
+

� I� established, we have substituting everything back in: x = ln(S/K),
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⌧ = �

2

2

(T � t) and k = 2r

�

2 .

C(S, t) = Ku(x, ⌧) = Ke↵x+�⌧v(x, ⌧)
= Ke↵x+�⌧ (I

+

� I�)
= Ke↵x+�⌧ex�↵x��⌧ · N(d

+

)�Ke↵x+�⌧e�↵x��⌧�k⌧N(d�)
= KexN(d

+

)�Ke�k⌧N(d�)
= SN(d

+

)�Ke�r(T�t)N(d�)

4.4 Exercises

1. Draw some graphs of the distribution of a Poisson process X
t

for various
values of t (and �). What happens as t increases?

2. Since for a Poisson process P
jk

(t) = P
0,k�j

(t) for all positive t, show
that if X

0

= j, then the random variable X
t

� j has a Poisson distri-
bution with parameter �t. Then, use the Markov assumption to prove
that X

t

�X
s

has Poisson distribution with parameter �(t� s).

3. Let T
m

be the continuous random variable that gives the time to the
mth jump of a Poisson process with parameter �. Find the pdf of T

m

.

4. For a Poisson process with parameter �, find P (X
s

= m|X
t

= n), both
for the case

0  n  m and 0  t  s

and the case

0  m  n and 0  s  t

5. Verify that the expected value and variance of W�

t

are as claimed in
the text.

6. Memorize the properties of the Wiener process and close your notes
and books and write them on them down.

7. Verify that the function p(x, t) obtained at the end of the section sat-
isfies the Fokker-Planck equation.

8. Calculate E(e�W

t).
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9. Suppose a particle is moving along the real line following a Wiener
process. At time 10 you observe the position of the particle is 3. What
is the probability that at time 12 the particle will be found in the
interval [5, 7]. (Write down the expression and then use a computer, or
a table if you must, to estimate this value.)

10. On a computer (or a calculator), find the smallest value of n = 1, 2, 3, · · ·
such that P (|W

1

|  n) is calculated as 0.

11. What is E(W 2

s

W
t

). You must break up the cases s < t and s > t.

The following three problems provide justification for the Ito calculus
rule (dW

s

)2 = ds. This problems is very similar to the calculation of
the Ito integral

R
W

t

dW
t

. Recall that for a process �
t

adapted to X
t

how the Ito integral Z
t

t0

�
s

dX
s

is defined. First, for a partition P = {t
0

< t
1

< t
2

< · · · t
n

= t} we
define the Ito sum

I(�
s

,P , dX
s

) =
nX

j=1

�
t

j�1�X
t

j

where �X
t

j

= X
t

j

�X
t

j�1 . Then one forms the limit as the mesh size
of the partitions go to zero,

Z
t

t0

�
s

dX
s

= lim
mesh P!0

I(�
s

,P , dX
s

)

12. Let W
t

be the Wiener process. Show

(a) Show E((�W
t

i

)2) = �t
i

.

(b) Show E(((�W
t

i

)2 ��t
i

)2) = 2(�t
i

)2.

13. For a partition P as above, calculate the mean square di↵erence which
is by definition

E((I(�
s

,P , (dW
s

)2)� I(�
s

,P , dt))2)
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= E((
nX

j=1

�
t

j�1(�W
t

j

)2 �
nX

j=1

�
t

j�1�t
j

)2)

and show that it equals

2
nX

j=1

E(�2

t

j�1
)(�t

j

)2

14. Show that for an adapted process �
s

such that E(�2

s

)  M for some
M > 0 and for all s, that the limit as the mesh P ! 0 of this expression
is 0 and thus that for any adapted �

s

Z
t

t0

�
s

(dW
s

)2 =

Z
t

t0

�
s

ds

15. Calculate Z
t

0

W n

s

dW
s

16. (a) Solve the stock model SDE

dS
t

= µS
t

dt + �S
t

dW
t

(b) Find the pdf of S
t

.

(c) If µ = .1 and � = .25 and S
0

= 100 what is

P (S
1

� 110)

.

17. What is d(sin(W
t

))

18. Solve the Vasicek model for interest rates

dr
t

= a(b� r
t

)dt + �dW
t

subject to the initial condition r
0

= c. (Hint: You will need to use a
multiplier similar to the one for the Ornstein-Uhlenbeck process.)
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19. This problem is long and has many parts. If you can not do one part,
go onto the next.

In this problem, you will show how to synthesize any derivative (whose
pay-o↵ only depends on the final value of the stock) in terms of calls
with di↵erent strikes. This allows us to express the value of any deriva-
tive in terms of the Black-Scholes formula.

(a) Consider the following functions: Fix a number h > 0. Define

�
h

(x) =

8
><

>:

0 if |x| � h

(x + h)/h2 if x 2 [�h, 0]

(h� x)/h2 if x 2 [0, h]

9
>=

>;
(4.4.1)

Show that collection of functions �
h

(x) for h > 0 forms a �-
function.

Recall that this implies that for any continuous function f that

f(y) = lim
h!0

Z 1

�1
f(x)�

h

(x� y)dx

(b) Consider a non-divdend paying stock S. Suppose European calls
on S with expiration T are available with arbitrary strike prices
K. Let C(S, t, K) denote the value at time t of the call with strike
K. Thus, for example, C(S, T, K) = max(S �K, 0).

Show

�
h

(S�K) =
1

h2

(C(S, T, K + h)� 2C(S, T, K) + C(S, T, K � h))

(c) Let h(S) denote the payo↵ function of some derivative. Then we
can synthesize the derivative by

h(S) = lim
h!0

Z 1

0

h(K)�
h

(S �K)dK

If V (S, t) denotes the value at time t of the derivative with payo↵
function h if stock price is S (at time t) then why is V (S, t) =

lim
h!0

Z 1

0

h(K)
1

h2

(C(S, T, K + h)� 2C(S, T, K) + C(S, T, K � h)) dK
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(d) Using Taylor’s theorem, show that

lim
h!0

1

h2

(C(S, T, K + h)� 2C(S, T, K) + C(S, T, K � h))

=
@2C(S, t, K)

@K2

(e) Show that V (S, t) is equal to

h(K)
@C(S, t, K)

@K
|1
K=0

�h0(K)C(S, t, K)|1
K=0

+

Z 1

0

h00(K)C(S, t, K)dK

(Hint: Integrate by parts.)


